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Lé. ANTHROPOMETRY AND TEMPORO-SPATIAL ENVIRONMENT

The management of workspace, clothing and time elements in space opera-
tions is a major factor in optimizing crew comfort and efficiency. The anthro-
pometric sizing of the astronaut population will be used whenever these data
are available. Alteration of optimum workspace by zero gravity has already
been covered under zero gravity in Acceleration (No. 7). Confinement and
biorhythmic factors will complete the section.

ANTHROPOMETRIC FACTORS IN WORKSPACE ANALYSIS

Several reviews are available of anthropometric factors in engineering
design (71, 72, 145, 163, 164, 165, 213, 224, 234, 241, 246, 263, 294, 310).
These cover static and dynamic body dimensions of the general population, as
well as specific military groups. These may be used in the design of the ap-
propriate ground based- as well as flight equipment whenever the specific
dimensions of the astronaut group are not critical.

Those aspects of spacecraft design that are related to the anthropological
(or physical) characteristics and the performance of the crew include: (25,
213, 224, 233, 234, 246)

®* Design of protective clothing and portable life support
systems (fit, mobility, task performance considerations)
(129, 131, 232, 236, 243, 245, 246, 247, 331, 332, 333, 336,
371)

®* Layout of the workspace in the spacecraft cabins (89, 129, 131,
232, 233, 236, 243, 245, 246, 247, 331, 333, 373)

®* Designof the occupancy and restraint systems (fit, mobility,
and support considerations (129, 131, 232, 246, 331, 332, 333,
336)

® Selection and design of displays and controls (88, 129, 130, 131,
160, 213, 224, 232, 233, 234, 243, 245, 247, 331, 332, 333,
336)

¢ Design of the equipment for maintainability (102, 333)

¢ Design of training equipment (to support crew performance)
(130, 232, 332, 333, 336)

¢ Safety and hazard standards related to the spacecraft (123,
243, 245, 246, 247, 330, 331, 332, 333, 336)
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Human Dimensions

Most of the anthropometric data are presented as percentiles of the popula
tion distribution. The use of percentile values as opposed to average or mean
values is illustrated in Figure 16-1. In the charts presented in this section,
whenever possible the size and composition of the population sample from whic.
the data are derived are indicated (72).
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The meaning of percentile. Percentiles comprise the 100 equal parts into which the entire range
of values is divided for any given dimension. As an illustration, sitting heights of a large
sample of men were measured and the values distributed graphically into the 100 percentiles

as shown in the graph above

The designer should design according to the concept of design litnits' or '"range of accommoda-

tion." This concept, excmplified in the graph, involves the evaluation of percentile ranges.
Note that the variability of the extreme 10% (the largest 5% and the smallest 5% combined)
exceeds the variability of the central 80%, and so does the variability of the extreme 2% (largest
1% and smallest 1% combined). By proper analysis of the data on the using population, the de-
signer can efficiently provide precisely the adjustability needed for any desired segment of the
population.

Figure 16-1

The Use of Percentile Values in Anthropometry

{After Hertzberg and Clauser(164))

Human dimensions are measured in a standardized manner. Such stand-
arization is critical if data from one population are to be compared with data
from a different population. One must know the position of the body, the
points on the body surface from which measurements are made, and whether
the body was nude or clothed. Sketches accompany many of the charts to in-
dicate how the measurements were taken.

In choosing design values from tables of anthropometric or biomechanical
data, the engineer should select that value which will accommodate the maxi-
mum practicable percentage of the potential user population. For example,
an access hatch should be large enough for the largest man to pass through;

a switch for a panel to be operated by a seated, restrained operator should be
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located at a distance no farther than that which the man with the shortest arm
can efficiently reach to actuate the switch. A control should not require more
force than the weakest man who is to use the equipment can be expected to ap-
ply, yet the control should be able to withstand more force than the strongest
man can be expected to apply under normal conditions. For astronauts it is
vital that the entire range be accommodated, but for non-astronauts using
ground-based equipment, 95% or -- if space is critical -- 90% of the range may
suffice. Furthermore, the principle of mock-up trials, using subjects who

are physically representative of the using population, wearing typical outfits,
and performing simulated tasks, should be used before final decisions on
design are made. For ground-based operations, anthropometric data are
required on the general population. The basic body dimensions of a generalized
U. S. male population is noted in Figure 16-2. The U. S. National Health Ex-
amination Survey, conducted in 1962-64, gives 10 key dimensions for a truly
representative sample of the U.S. population. Data are presented by age
group (18-24, 25-29, etc., to age 79) covering the total population (71, 334).

Anthropometric data are required for design of equipment used in military
aircraft supporting launch, recovery and in-flight monitoring operations.
Dimensions of the USAF flying personnel are noted in Figure 16-3. Correla-
tions between the dimensions of this population are available (164). Table
16-4 covers the overall head, body, and limb measurements of the astronaut
population. The body dimensions of from 3 to 38 astronauts were used to
establish means, standard deviations, and ranges (94).

The need for biomechanical data regarding the center of gravity (CG) and
moments of inertia of the human body and body segments arises in several
fields of application. Such data are useful in determining the stability and
angular acceleration of equipment occupied or operated by persons in various
postural attitudes; in the design of seats, particularly aircraft ejection seats
and fastening devices; in dummy construction; in assessing the ability to apply
torque while in the weightless state and the consequences of such application;
and in the study of human biomechanics. An excellent review of the techniques
of measurement is available {84). Data in the older literature (35, 201) have
been updated by more recent studies (22, 23, 77).

Moment of inertia (Ic) about the segment CG is equal to the product of
segment mass and radius of gyration squared. Moment of inertia about a
proximal joint center (Ig) is related to I oG by the formula:

Ip = Icg + mD2Z, (1)

where m is the segment mass and D is the distance from the joint center to the
CG. The moments of inertia of the segments can be determined by a free-
swinging pendulum system. The segments were suspended from the proximal
joint center, the oscillation period measured, and the moment of inertia deter-
mined by the relation:

I, = mel (2)
2 2
4r2g

where Igp = moment of inertia about the point of suspension,

m = mass of the segment (weight/g),
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LENGTH — INCHES

16-4

Body dimensions of United States males, as estimated and
and synthesized for use in commercial aircraft interior des-
ign. Adapted from a chart prepared by J. A. Roebuck,
Douglas Aircraft Co., inc., from data of Hooton (169),
Randall et al (263 ), Daniels et al { 73 ), Hertzberg et
al (165 )}, and McFarland et al { 214).
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Body Dimensions of U. S. Males

{(After Hertzberg and Clauser(164))



P 200 /
- = —
; // -
O 160 -
w /
120 _
70
——T" | gy HEIGHT I
60 p—eet—"] |t ]
LE HEIGHT
3 CERV\CA
— TGHT
"] LDER HE
N s L vl
2
g 1
: s ELBOW HEIGHT — —
I T — —
o 40.-——6— WAIST HElG'HT
z
3 ; CROTCH HElGHT
X 5 GLUTEAL FURROW HE|GHT
1
20— » KNEECAP HEIGHT
10 1
@ |
10 smmc HEIGHT l
" EYE HElGHT SITTING
L0 ‘
o
S
= 12 SHOULDER HEIGHT - SITTING
z® 3 KNEE HEIGHT SITTING
(&)
5 14 POPLITEAL HElG,HT lsmmc
- I I
10 15~ ELBOW REST HEIGHT - SITTING
16 THIGH CL EARANCE HEIGHT - SITTING
0
1
S5 10 20 30 40 50 60 70 80 % Y o

PERCENTILE

Body dilllellslo“s ol a Salllp e o approximate Yy 4 1r g ersonnel o “le All orce
.

Figure 16-3
Dimensions of Flying Personnel

(After Hertzberg and Clauser“64))

16-5



Figure 16-3 (continued)
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Table 16-4 (continued)
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Table 16-4 (continued)
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10.

11.

12.

13.

*Description of Non-Standard Measurements

Back Length of Waist

Circumference of Buttocks

Extended Arm Length

Front Length of Waist

Instep Circumference

Length of Crotch

Length of Gluteal Arc

Mid-Shoulder

Mid-Shoulder to Top of Head

Scye Circumference

Sleeve Inseam

Vertical Trunk Diameter

and Circumference

Waist Level

Distance from waist back mark to cervical prominence.
Measured at point of maximum circumference.
Distance from apex of armpit (equidistant between
anterior and posterior folds) along arms (extended

laterally and horizontally) to the tip of forefinger.

Distance from waist front mark to the bottom of
sternal notch.

Circumference of foot measured with poles at apex
of heel and dorsum of foot above peak of arch.

Distance measured along the skin from the anterior
waistline through the crotch to the posterior waistline.

Distance measured along the skin from the top of
buttock fold, craniad, to posterior waist point.

Point on top of shoulder at 4" distance from the
dorsal cervical prominence.

Vertical distance from the horizontal line at mid-
shoulder point to horizonta! line at top of head.

Circumference of shoulder measured along a line ex-
tending vertically from the apex of the armpit
concavity.

Distance from apex of armpit to first joint of wrist.
Distance of the straight-line projection from mid-
shoulder point to apex of crotch and the circumfer-

ence along this line (following the skin contours).

Measured at the level of the iliac crest.
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L = distance from the CG to the suspension point,

f = frequency of oscillation and

g = acceleration of gravity (980 cm/sec?);
and Icg = Io - mL%, (3)
where Icg = moment of inertia about the CG.

A shift in whole body moment of inertia because of changes in posture or move-
ment of limbs will be equivalent to the algebraic term of the individual segment
changes in moment of inertia about the axis of rotation. The contribution of
each segment to total moment of inertia is determined by the equation:

2
IToi:al a (ICG + mx%), (4)

!

where IcG = moment of inertia about segment CG
m = mass of the segment,
x = distance of the segment CG from the axis of rotation.

Consequently the change in ITotal is the difference between the sum of mx?
before and after change in posture.

Table 16-5a shows diagrammatically the hinge points and centers of mass
of the body segments. Table 16-5b gives the coordinates of these points,
Table 16-5c represents the biomechanical properties of the body segments of
the USAF 50th percentile man. Table 16-5d gives regression equations for
computing the mass of body segments from total body weight. These were
determined from a reanalysis of the data in references (35) and (77).
Calculations have also been made of the CG's and moments of inertia. Table
16-6a presents the centers of gravity and moments of inertia of the total body
of 50th percentile USAF male population in different postures given in British
Engineering Units; Figure 16-6b gives similar data in the metric system with
regression equations. Table 16-6c represents formulas which can be used to
calculate moments of inertia of body segments. In Table 16-6d, the moments
of inertia of these segments are shown for two body positions. Tables 16-11
b, c, and d present the effect of pressure suits on centers of gravity and
moments of inertia of subjects in pressure suits (346).

Inertial data of these types have been used to predict with reasonable
accuracy dynamic responses of man in orbital weightlessness (197, 206, 358)
and for impact dynamics (47). In preliminary tests, these models appear
to offer much in terms of semiquantitative prediction of body response
to work tasks under subgravity as well as under the zero gravity condition.
Prime use is in analysis of work, self-rotation maneuvers, and translation
potentials of men in zero gravity. The data have also been used in the design
of control systems for astronaut maneuvering units (AMU) and other EVA
devices (189, 322). Computer models of these systems (86, 206, 281, 297,
358, 372) appear to offer a better solution to these dynamic problems.
Problems of hydrodynamic mass and drag areas during underwater simulation
of weightlessness are covered in the discussion of Figures 7-68 and Table 7-69.
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Figure 165

Centers of Gravity and Specific Gravity of Man

% VU CENTER OF MASS Z
* HINGE POINT
ot o A o
ce .8 o2
o3
e o3
O 4 Ce
D
os os
o
tof ce
o7 o7
cs ce
Y X

a. Diagram of Hinge Points and Centers of Mass

(After Whitsett (358,

Hinge Point
and Symbol*

Coordinates (Inches)

X Y z

Neck *A 0 0 59.08
Shoulder *B 0 7.88 56. 50
Elbow *C 0 7.88 43.50
Hip *D 0 3.30 34.52
Knee s E 0 3.30 18.72
Mass Center

and Symbol*

Head o1 0 0 64. 10
Torso 02 0 0 46.80
Upper Arm o3 0 7.88 50.83
Lower Arm C4 0 7.88 39.20
Hand o5 0 7.88 31.68
Upper Leg [eX) 0 3.30 27.68
Lower Leg c1 0 3.30 11.80
Foot [oF ) 2.45 3.30 1.37

b. Coordinates of the Segment Hinge Points and Mass Centers
of USAF 50th Percentile Man

(After Whitsett (358))
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Figure 165 (continued)

Centroid

Segment Weight Density Length Location

(lbs) (lbs/ft%) (inches) (% length)
Head 11.20 71.6 10.04 50.0
Torso 78.90 68.6 24.56 50.0
Upper Arm 5.10 70.0 13.00 43.6
Lower Arm 3.03 70.0 10.00 43.0
Hand 1.16 1.7 3.69 50.0
Upper Leg 16.33 68.6 15.80 43.3
Lower Leg 8.05 68.6 15.99 43.3
Foot 2.39 68.6 2.73 50.0

c. Biomechanical Properties of the Segments of the USAF 50th Percentile Man

(After Whitsett(358) from the data of Clauser, Hertzberg et al(165), and Dempster‘77))

Standard Deviation

Body Segment Regression Equation of the Residuals
Head, neck and trunk = 0.47 x Total body wt. + 5.4 (+ 2.9)
Total upper extremities = 0.13 x Total body wt. - 1.4 (+ 1.0)
Both Upper arms = 0.08 x Total body wt. - 1.3 (+ 0.5)
Forearms plus hands® = 0.06 x Total body wt. - 0.6 (+ 0.5)
Both forearms® = 0.04 x Total body wt. - 0.2 (+ 0.5)
Both hands = 0.01 x Total body wt. + 0.3 (+ 0.2)
Total lower extremities = 0.31 x Total body wt. + 1.2 (£ 2.2)
Both upper legs = 0.18 x Total body wt. + 1.5 (+ 1.6)
Both lower legs plus feet = 0.13 x Total body wt. - 0.2 (+ 0.9)
Both lower legs = 0.11 x Total body wt. - 0.9 (+ 0.7)
Both feet = 0.02 x Total body wt. + 0.7 (+ 0.3)

& N = 11, all others N = 12.

d. Regression Equations for Computing the Mass (in kg) of Body Segments

(From Barter (22))
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Figure 166

Centers of Gravity and Moments of Inertia of USAF Males in Different Postures

a. Whole-Body (British Engineering Units)

1. Standing

2. Standing,
arms over
head

3. Spread eagle

4. Sitting

5. Sitting, fore-

arms down

6. Sitting, thighs

elevated

7. Mercury

configuration

8. Relaxed
(Weightless)

Axis Center of Gravity Moment of Inertia
(in.) (1b-in. ~sec?)

Mean S.D. Mean S.D.

X 3.5 0.20 115.0 19.3
y 4.8 0.39 103.0 17.9
z 31.0 1.45 11.3 2.2
x 3.5 0.22 152.0 26.1
y 4.8 0.39 137.0 25.3
z 28.6 1.33 11.1 1.9
X 3.3 0.19 151.0 27.1
y 4.8 0.39 114.0 21.3
z 28.5 1.90 36.6 7.9
X 7.9 0.36 61.1 10.3
y 4.8 0.39 66.6 11.6
z 26 5 1.14 33.5 5.8
b3 7.1 0.34 62.4 9.7
y 4.8 0.39 68.1 12.0
z 26.8 1.16 33.8 5.9
X 7.2 0.37 39.1 6.0
y 4.8 0.39 38.0 5.8
z 23.1 0.78 26.3 5.1
X 7.9 0.34 65.8 10.3
y 4.8 0.39 75.2 14.0
z 27.1 1.14 34.2 5.6
X 7.3 0.33 92.2 13.3
y 4.8 0.39 88.2 13.3
z 27.5 1.44 35.9 5.4

Sample size 66. Mean age 33.2 yrs; S.D. age 7.2 yrs. Mean weight 166.4

lbs; S.D. weight 19.8 lbs

z
'
[
)

L(Y) - V2Bispinous Breadth

) 4

Mean stature 69.4 in; S. D. stature 2.9 in.

1120

47
101°

109°
830

560
124

The location of the centers of gravity of the body was meas-

(After Hertzberg and Clauser {164), adapted from Santschi et al!279))

ured along the Z-axis from the top of the head, L(Z), along
the X-axis from the back plane, L(Y), and along the Y-axis
from the anterior superior spine of the ilium, L(X). How-
ever, since body symmetry with respect to the sagittal
LY} plane was assumed, L(Y) is defined as equal to one-half
bispinous breadth (distance between anterior-superior
iliac spines).
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Figure 16-6 {continued)

b.

(After Damon et al(7”, adapted from Santschi et a

16-20

Equations Relating

Whole-Body (Metric Units) - with Correlation Coefficients and Regression

Stature and Weight to Moment of inertia (N = 66)

Center of Moment of Moment of Inertia
Gravity ® Inertia Regrassion Equations
{cm) (om_Cm?x100) {am cn” x 10°)
Position Axis Mean S.D. Mean S.D. Ry gy S5-E.
Standing x 8.9 0.51 130.0 21.8 .98 4.73 -262.0 +1.685 +1.28w
(arms at vy 12.2 0.99 116.0 20.6 .96 5.96 -240.0 +1.538 +1.15¥
sides) z 78.8 3.68 12.8 2.5 .93 0.95 -0.683 -0, 0U4S +0.279W
standing X 8.9 0.56 172.0 29.5 .98 6.36 -371.0 +2.39S +1.63W
(arms over Y 12.2 0.99 155.0 2B.6 .96 7.79 -376.0 +2.385 +1.47W
head ) z 72.7 3.38 12.6 2.1 .86 0.98 1.6 -0.038S +0.234W
Spread X 8.4 0.48 171.0 30.6 .98 5.54 -399.0 +2.518 +1.6GW
Eagle Y 12,2 0.99 129.0 24.1 .96 7.06 -305.0 +1.91S +1.29W
z 72.4 4.8 41.4 B.9 93 3.1 -11L.0 +0.677S +0.4BUwW
sitting X 20.1 ©0.91 69.1 10.6 .92 4.53 -104.0 +0.637S +0.804W
{elbows Y 12.2 0.99 75.4 13.1 92 5.10 -153.0 +1.01S +0.669W
at 90°) Z 67.3 2.89 37.9 6.6 .97 1.64  -53.6 +0.34S +0.502W
sittin, X 19.6 0.86 70.5 11.0 .91 4.50 -99.0 +0.5T4S +0.TT1IW
(forea%ms Y 12.2 0.99 77.0 13.6 .92 5.28 -144.0 +0.913S +0.802W
down) z 68.1 2.95 38.2 6.7 .97 1.54 -60.8 +0.3418 +0.514W
Sittl X 18.3 0.94 4s.2 6.8 .89 3.16 -38.2  +0.2425 +0.529W
(thig:ﬁ Y 12.2 0.99 43.0 6.6 .77 4.4 -25.1 +0.193S +0.449W
elevated) z 58.7 1.98 23.7 5.8 .92 =2.26 _34.4 40,1465 +0.509W
20.1 0.86 T4.4 10.6 .93 4.24 -107.0 +0,699S +0.768W
?ﬁ?i?iin ¥ 12.2 0.99 85.1 15.8 .94 5.61 -198.0 +1.27S +0.794W
7z 63.8 2.85 13B.7 6.3 .9 1.85 -50.9 +0.297S +0.492W
Relaxed x 18.5 0.84 104.0 15.0 .96 4.20 -120,0 +0.788S5 +1.13¥W
12.2 0. 9.8 15.0 .94 5.13 -i57.0 +1.085 +0.879W
(veignciess) § 69.9 3.22 40.6 6.1 .96 177h  E3.4 +0.3465 +0.440W

8 [ocatlon of CGs are with respect to the back plane,

ilium, and top of the head.

S i1s stature in centimeters;

W is welght in kllograms.

(279),

anterior superior spine

c. Formulas for Calculating Local Moments of Inertia of Body Segments
Moments of Inertia
Segment Inc, | 1.,
Head z m(a® + b?%) L, 5 ma’
Torso —1—m(3a2 + 17) Lm(3b2 + 17) 1 (a® + b?)
12 12 g ma -
Upper and m
Lower Arms m[A(—G—L)+ BLz] I, m® .
and Legs £ 25¢
2 F]
Hand Fm ) Lo Lice
1
Foot § 1—12 m(c? + +7) | PP
m = mass L = length
a = semi-major axis A and B are constants for segments (see Ref.358)
b = semi-minor axis c instep length of foot
d = diameter 6 = average density

(After Whitsetr \358))



Figure 16-6 (continued)

d.  Moments of Inertia of the Segments of 50th Percentile
USAF Man for Two Positions

Segments*
Head Torsn Upper Lower Hands Upper Lower Feet Total
Armas | Arms Leps | Legs
1., Position A 0-0183 | 1.5000 [ 9.0157 | 0.0056 | 0.0004 | 0.0776 | 0.0372 | 0.0006 || 1.2927
Pusition B 0-0183 | 1.0000 | 0.0157 | 0.0044 | 0.0004 | 00620 | 0.0372 | 00006 || 1. 2359
mD*  Position A TSI 10125 10.2199 | 0.0405 | 0.0292 | 0.4964 | 1.3114 | 0.7388 || 6. 1963
Position B 0.7859 [ 0.0092 | 0.0932 | 0.0407 | 0.0303 | 0.1496 | 0.0588 | 01252 || 1 2907
1. Position A 1.5297 | 2.0125 | 0.2356 | 0.0461 | 0.0296 | 0.5740 | 1.3486 | 0.7394 || 9. 4890
Pasition B 05042 | 1.0092 | 0.1089 | 0.0a51 | 0.0307 | 02116 | 0.0960 | 01258 || 3. 0456
.., Position A 0-0183 1 0.9300 | 0.0157 | 0.0056 | 0.0004 | 0.0776 | 0.0372 | 0.00268 || 1. 2269
Position B 0-0183 | 0.9300 | 0.0157 | 00055 | 0.0004 | 0.0776 | 0.0372 | 00028 || 1 2269 30° Lt
mD’  Position A L3114 ] 10125 | 0.1517 | 0.0000 | 0.0137 | 0.4582 | 1.2025 | 0.7361 || 7. 5284
Position B 0.7950 | 0.0734 | 0.0292 | 0.0002 | 0.0188 | 0.1190 | 0. to15 | o 1560 || 1 7176
I, Pusition A 15297 | 1.9425 | 0.1674 | 0.0056 | 0.0141 | 0.5358 | 1.3297 | c.7389 || . 0553
Position B 08133 1 1.0034 | 0.0449 | 0.0058 | 0.0192 | 0.1966 | 01387 | 0.1568 || 2. 0445 B
A
f,,. Position A 0.0124 | 0.2300 | 0.0018 | 0.0005 | 0.0004 | 0.0154 | 0.0037 | 0.0028 || 0. 2922
Position B 0-0124 | 0.2300 | 0.0018 | 0.0020 | 0.0004 | 0.0310 | 0.0037 | 0 0028 || 0 3255
mD*  Position A 00000 { 0.0001 | 0.0682 | 0.0405 | 0.0155 | 0.0382 | 0.0188 | 0.0085 || 0.3797
Position B 0.0091 | 0.0642 | 0.0723 | 0.0405 | 0.0195 | 0.045% | 0.0804 | 0.0420 || 0.6745
1 Position A 0.0124 | 0.2301 | 0.0700 | 0.0413 | 0.0159 | 0.0536 | 0.0226 | 0.0113 || 0.6710
Position B 0.0215 | 0.2942 | 0.0742 | 0.0426 | 0.0199 | 0.0769 | 0.0841 | 0. 0445 | 1 0004

*Positions A and B are shown in figure.
TAll values are slug-ft2,

Determination of specific gravity can be made from anthropometric data
( 70 ). Attempts have been made to relate the specific gravity of different
individuals to the somato type classification of Sheldon (85, 250 ). This
formula for specific gravity works only for navy divers for which it was
developed. It failed to predict densitometrically determined density (or speci-
fic gravity) or percentage of body fat among athletic young men ( 70 ). The
best prediction of density is actually based on averaging two skin fold measure -
ments by the equations (253): Density = 1.0923 -0.0203 (triceps skinfold,
in cm.); Density = 1.0896 -0.0179 (subscapular skinfold, in cm.). To obtain
fat from density, Fat = (4.0439/density -3.6266). This formula of Grande is
based on a reference man with 17. 8% of total body fat ( 121).

The dimensions of a typical 5th to 95th percentile, seated, pilot operator
are seen in Figure 16-7. Data are available on three-dimensional arm reach
in the seated position (71, 192 ). Data are also available on the design of new
seat concepts for aerospace vehicles (258 ) (see also sections on Impact No. 7,
and Vibration No. 8. Figure 16-8 covers workspace requirements for the 95th
percentile USAF population.

Body areas are needed for thermal and energetic analyses. (See Thermal
Environment, (No. 6) and Oxygen-CO2-Energy, (No. 10). Table 6-22 repre-
sents a cylindrical model of man for calculation of heat transfer coefficients.
Figure 6-16 is a nomograph for calculation of the surface area of the USAF
male population from height and weight data. Figure 10-13 is a graph which
can be used in the same calculation for the average male population. In
analysis of radiative heat transfer, the total radiation area (Figure 6-17) and
the projected areas (Figure 6-18) can be used (133, 164, 291). Drag areas
and hydrodynamic mass of suited subjects are presented in Figure 7-68 and
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Table 16-8

Work Space Dimensions

(After Hertzberg and Clauser“64))

95th percentile 5th percentile
_M T} seated eye height  standing
By eye height

B
)
- l
~
- v ©
f'-‘:.’ [ v 2' ' =) E g ew
2y ] ° : ] = Lo b e
£ & - « © 2 (] i ] ] -
o T 2 ] e (3 S ¢ v 2. - ©
- - - 1 b < - ”» O b 3 -
X ] E F ] g3 . o g ﬁ: g @ - §
L] = 3] - H
85 §| E2)i7|i |F2E|d|: (3|5 £5 | 35| &s
3 Fy =3 K] k) E o =g g
£5 o CPu| 2F | g ESw| E §' E] Ed | @§ . E®
ES | % | B3| gl|c.|Ezf|E|f |3 B5|2i| 53 if
] @ F-
] 3|l w - 383 - - - = =2 xe
i8 | 8| EF| Eg 2% Ex9| E |8 |3 | EE| 35| 38 it
=& 9} >Slos |28 )1F3¢s = [ b k) & & E Za
Type of Console A B C D E F G H 1 J K L M
1. Sit-Stand 62.0 Opt. 26 15* 4 16 18 i8 4 6.5 36.0 28.5 36
2. Sit (w/vision 47.5* 25.5 18.0
over top) to Opt. 22 15° 4 16 18 18 4 6.5 to to 36
58.0 . 36.0 28.5
3. Sit(w/o vision 51.5es 25.5 18.0
over top) to Opt. 26 15* 4 16 18 18 4 6.5 to to 36
62.0 36.0 28.5
4. Stand (w/vision 62.0 Opt. 26 15° 4 18 -- .- -- -~ 36.0 .-- 36
over top)
5. Stand (w/o vision 72.0 Opt. 36 15* 4 18 -- -- -- -- 36.0 --- 36
over top)
* "A'" must never be more than 29.5 inches greater than "'L". ! When seat-to-standing surface erceeds 18",
** "A' must never be more than 33.5 inches greater than "L", 2 heel catch should be provided.

Table of standard values for critical dimensions used in the design of instrument consoles for
the seated and/or standing operator, with and without a requirement on the operator to main-
tain horizontal visual contact with other displays or test apparatus beyond the console. Design
values for each console established to accommodate 95+ percent of USAF population.

Source: Anthropology Branch, 6570th Aerospace Medical Research Laboratories, Wright-
Patterson Air Force Base, Ohio, 1963.
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Table 7-69. Buttock contact areas and thigh dimensions for the specific popu-
lation indicated are seen in Figure 16-9.

Presence of clothing increases the body dimensions. Group support equip-
ment in space operations often makes use of military support. Figure 16-10
covers the increase dimensions to be expected from clothing on support personne

The increase in body dimensions resulting from pressure-suit wear will
vary with design of the suit. Table 16-1la covers increases from the USAF
MC-2 suits. Tables 16-11b and ¢ present changes in body dimensions of astro-
nauts in NASA soft and hard suits. Figure 16-11d shows the changes in center
of gravity; and Tables 16d and e, the changes in center of gravity and moment
of inertia of the whole body produced by space suits, pressurized and unpres-
surized. Table 16-11f gives regression equations which can be used to calcu-
late these changes in moments of inertia from data on body weight.

Stowage volumes for soft (223 ) and hard { 26 ) suits have been determined.
The soft suit may be packed into a slab volume 64 x 27 x 7 inches and the slab
arced along its length with a radius of 49 inches. The helmet can be considered
a sphere of about 16 inches maximum diameter; and back pack, a volume of
about 12x16 x9 inches. The hard suit can be stowed in a volume of 46 x25x16
inches including helmet. These dimensions are only approximate values for
typical prototype suits.

Workspace Factors

Division of workspace into functional compartments must also be considered
( 54, 93, 109, 266 ). (See also section on Confinement).

In the Mercury spacecraft there was an internal volume of approximately
54 cubic feet of which 4 cubic feet was occupied by the astronaut. Since the
astronaut was never required to leave his couch for either personal or mission
requirements, such a limited volume could be tolerated over the period of
even the longest mission of 22 orbits. The Gemini spacecraft, on the other
hand, provided an internal volume of approximately 88 cubic feet or 11 cubic
feet less per man than that provided by Mercury. Details of Gemini cabins
are available (217, 231 ). Since the Gemini missions were considerably more
demanding due to duration and extravehicular activities, the lack of significant,
useable work space was exhibited by the constraints placed upon work/rest
cycles, stowage provisions in and around the hatches, headrest areas, and
limited leg movement in the foot-well, to name a few.

Although the Apollo command module spacecraft provides an internal
volume of approximately 320 cubic feet, it must be remembered that this
space is distributed across three couch stations, two work stations in the
lower equipment bay, a guidance and navigation station, and two sleep
stations under the couches. The cubage at these stations, though marginal,
is sufficient to meet mission requirements provided that the intravehicular
activity at the various stations is properly sequenced (244 ). However, for
missions of longer duration, considerably greater volume at each station would
have to be provided to meet increased stowage requirements. Based on these
and similar considerations, (see section below on Confinement), the following
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Figure 16-9
Buttock Areas and Thigh Dimensions

(After Hertzberg and Clauser(164))

SUBJECT
KEY -

P ~ansun.
Lt LENWY Y

0 HE S N N S S S N S R
0 40 80 120 160 200 240
WEIGHT - Ib

Buttock contact areas of nine men who were gradually lowered onto a measuring plate until
their full weights were supported. Subjects fell within the following ranges: age 27-41 years;
height 66-74 inches; weight 120-269 pounds. When these contact areas had been established,
loads were increased by having the subjects hold weights in their arms to determine what in-
crease in contact area would result. Loads of 20,40, and 60 pounds caused no measurable
increase in buttock contact area.

(Adapted from Swearingen et al(319))

.

o ™

SECTION A -
SCALE - NONE

Height and width of the thighs, shown on the right, from a section taken just ahead of the inter-
section of thigh and trunk as shown in the drawing on the left. The x distance from the Seat Ref-
erence Point (SRP) to the section varied from 9.5 to 12 inches. Dimensions for the thigh are
95th percentiles, meaning that 5% of the AF flying population will have larger dimensions. The
thigh heights were measured, the thigh widths computed from the relation: Width = 1.37 Height.

(Adapted from Esch(91 ))
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Table 16-10

Increase in Dimensions from Clothing

(After Hertzberg and Clauser“64))
Civilians Army Air Force
Men Women full light winter
street street | summer fall winter winter |flight flight flight
clothing clothing| uniform uniform uniform combat | gear assembly assembly
weight (1bs) 5.0 3.5 9.4 11.8 18.6 229 20.0
stature 1.0 0.5-3.0 2.65 2.65 2.65 2.15 -20 33 1.9
abdomen depth 0.94 1.18 195 2.54 5.0 14
arm reach, 0.04 0.08 0.20 0.37 0.4
anterior
buttock-knee 0.20 0.30 0.54 010 2.0 0.5
length
chest breadth 2.5 0.6
chest depth 0. .41 0.96 1.80 154 4.5 038 1.4
elbow breadth 0.56 1.04 1.84 212 110 4.4
eye level height, 0.04 0.08 016 0 22 04
sitting
foot breadth 0.3 0.20 0.20 0.20 020 1.2
foot length 1.2 1.60 1.60 1 60 1.60 2.7
hand breadth 0.30 0.4
hand length Q15 0.3
head breadth 2.8 2.8 2.8 2.8 0.4
head length 3.5 35 3.5 3.5 c.d
head height 1.35 1.35 135 1.45 0.2
hip breadth 0.56 0.76 108 1.40 1.3
hip breadth. 0.56 076 108 1.40 55 2.9 1.7
sittng
knee breadth 0.18 0.48 0.72 1.68 9.5 25
knee height, 1.32 132 1.44 1.44 1.8
sitting
shoulder breadth 0.24 0.88 1.52 1.16 6.0 0.4 1.3
shoulder-elbow 0.14 0.50 0.94 0.62 0.3
length .
shoulder height, 0.16 0.58 092 080 06
s:tting
sitting height 1.39 1.43 1.61 1 67 2.1 0.6

(All dimensions are given in inches)

Civilians, men: underwear, shirt, trousers, tie, socks. shoes

Civilians, women: underwear, dress, or blouse or sweater and skirt, shoes

Army, summer uniform: underwear, khakis or O.D.'s or fatigues, socks, shoes, helmet and hner

Army. fall uniform: underwear, khakis or O.D.'s or fatigues, blouse or field jacket, sovks, shous.

helmet and liner

Army, winter uniform: underwear, khakis or 0O.D.'s or fatigues, blouse or field jackel, vvercoat S0 ks
shoes, helmet and liner.

Army, winter combat: underwear, khakis or O.D. 's or fatigues, combat suit, overcoat, socks. shous.
gloves, wool cap, helmet and liner

Air Force, full flight gear: T-1 partial pressure suit, inflated, ventilatnon suit, deflated. MD-1 anti-

exposure suit and MD 3A liner, long cotton underwear
Air Force, light flight assembly: T-5 partial pressure suil, uninflated, K-1 pressure helmet and bouts
Air Force, winter flight assembly: World War 1l heavy winter flying clothing, including Jacket, trousers,
helmet, boots, and gloves

Source: Anthropology Branch, 6570th Aerospace Medical Research Laboratories, Wright-
Patterson Air Force Base, Ohio, 1963.



Figure 16-11

Anthropometric Study of Pressure Suits

a. Increase in Dimensions from Soft, Full Pressure Suits

Measurement Nude Uninflated Inflated
Median Range Median Range Median Range
shoulder circumference 48.3 (45.1-50.5) 56.1 (54.7-61.0) 63.0 (60.0-65.0)
chest circumference 39.6 (37.7-42.2) 48.3 (48.0-52.0) 52.5 (50.5-54.2)
waist circumference 34.3 {32.0-38.8) 44,4 (42.0-47.2) 47.3 (45.2-50.0)
upper thigh circumference 25.1 (22.3-26.0) 25.1 (24.5-28.0) 27.0 (25.3-29.0)
lower thigh circumference 17.0 (15.6-18.5) 20.8 (18.2-23.6) 22,1 (21.1-24.5)
calf circumference 14 (14.5-17.0) 16.9 (16.2-19.4) 18.3 (16.9-19.9)
ankle circumference 9.2 ( 8.9-10.5) 12.1  (11.4-13.6) 12.1  (12.0-13.8)
biceps circumference 13.5 (12,7-14.5) 14.8 (14,0-16.3) 16.2 (14.9-17.0)
wrist circumference 7.0 (6.6~ 7.2) 8.1 ( 7.9- 8.4) 9.0 ( 8.3- 9.2)
verticaltrunk circumference 7.4 (64.4-71,5) 66.8 (64.9-70.0)
knee circumference 15.9 (15.0-17.1) 22.1 (20.0-23.0) 21.8 (20.0-23.4)
vertical trunk circumference 64.2 (63.7-67.5) 66.5 (65.0-69.6) 67.3 (66.0-70.4)
buttock circumference 42.0 (39.1-45.5) 46.7 (45.3-51.0) 49.9 (47.3-51.0)
shoulder breadth 19.2 (18.2-19.8) 20.6 (18.6-22.0) 23.7 (13.8-25.5)
chest breadth 13.0 (10.9-12,9) 13.8 (12.7-15,1) 14.7 (14.4-15.6)
hip breadth 13.7 (12,9-14.4) 15.4 (14.1-16.3) 17.4 (16.2-18.6)
hip depth 10.3 (9.5-12,0) 11.4 (10.8-11.7) 15.0 (15.0)
chest depth 10.2 ( 9.8-10.7) 13.1 (12.1-13.5) 14.9 {14,2-15.2)
elbow-elbow breadth 19.9 (18.6-22.1) 23.2 (20.7-25.1) 27.1 (25.8-30.1)
knee-knee breadth 8.2 ( 7.8- 9.3) 12,0 (10.7-13,5) 21.3 (18.6-22.0)
sitting height 35.7 (34.7-37.7) 34.8 (33.7-36,2) 36.8 (35.6-38.5)
eye height 31.2 (29.6-33.0) 30.4 (28.4-31.7) 31.3 (29.4-32.2)
shoulder height 23.5 (22.7-24.9) 23.5 (22.1-24.5) 24.3 (23.4-25.3)
knee height 21.9 (21.3-22.8) 23.3 (22,.6-23.9) 24.0 (22.9-24.6)
popliteal height 17.5 (17.2-19.8) 18.1 (17.0-18.4) 18.2 (16.8-18.9)
elbow rest height 7.8 (7.5- 9.1) 8.2 ( 6.3-10.1) 10.0 ( 9.5-11,0)
shoulder-elbow length 15.0 (14.2-15.4) 15.4 (14,5-16.1) 15.8 (15.2-16.0)
forearm-hand length 19.2 (18.5-20.0) 19.4 (18.9-20.3) 19.8 (18.6-20.7
foot length 10.5 {10.3-11.0) 12,6 (11.8-12.7) 12.3 (11.7-12.6)
hand length 7.7 ( 7.5- 8.5) 7.5 ( 7.2- 1.7) 7.1 { 6.£- 7.5)
palm length 4.5 ( 4.4- 4.5) 3.5 3.9- 4.3) 4.0 ( 3.2- 5.9)
crotch height (standing) 33.3 (31.1-34.8) 32.4 (30.8-33.4)
thigh clearance 6.5 { 5.5- 7.1) 6.4 6.1- 7.0) 8.1 ( 7.6- 8.2)

All measurements were taken on seated subject, except crotch height. All dimensions
These measurements were taken on six subjects wearing the
MC-2(X-15 type) full-pressure suit.

are given in inches.

Source: Anthropology Branch, 6570th Aerospace Medical Research Laboratories,

Wright-Patterson Air Force Base, Ohio, 1963.

(After Hertzberg and Clauser(164))
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Figure 16-11 (continued)

b. Maximum Dimensions of a NASA Prototype, Soft, Full-Pressure Suit
in the Unpressurized and Pressurized Condition

These data, noted in indices, cover the large-long size of a S/N0O07 or (A6L) PGA
designed for a subject 6, 1.5" tall and 190 Ibs weight, representing approximately
the 95th percentile male. Extra vehicular operations require an addition to the total
height of 1.5 for the EVVA visor assembly and 0.6 for EV boots giving a total
standing height, pressurized, of 77.71 inches.

11.75 950
4>-\ }-4' 1175 A,,% ‘4———— 950
— L
TOP OF s
RI
NECK RING o T
.62 24 50
— 20.00
— |
13.62 262
150 ~ 14 00
10.40 13 40
&8 50 14 00 [ 26.00
66.96 : :
= izoo| | T 26.38
950 22 80
1300 16 25
11700 17.00
10.20 14 40
: 962 18.50 ©
> 900 )] g 17.62
7.12 1500 |*
12} . < 14 88
- - 900
7559
74.05 |
(73 10
* = =
= S| _ ANKLE
‘ e e e —

, .
(2.00 MEASURED WITH LEGS TOGETHER.

12.00
11.40

SUIT PRESSURIZED TO 3.7 PSIG.
SUIT AMBIENT (HELMET AND GLOVES OFF). FLOW=16 cfm.
NUDE OR -95th PERCENTILE MALE, STANDING, REF {145).

4
i

ALL DIMENSIONS IN INCHES.

(After Fedderson and Reed(g‘”)

16-28



Figure 16-11 (continued)

c. Anthropometry of the RX-5 Hard Space Suit

The hard suit is composed of 6 body elements, each with up to 6
different sizes noted by Roman numerals. The suit described below
is a composite of different body elements assembled for a specific

astronaut.  Adjustments for other sizes are noted after each specific

element. All dimensions are noted in inches.

ELEMENT SIZES OF SUIT MEASURED

DIMENSION ADJUSTMENTS FOR

OTHER SIZES

1.

UPPER TORSO - SIZE III

LOWER TORSO - SIZE III (Adjusted to the
Short Position) (+ 75" Adjustment possible)

UPPER ARM - SIZE IV

FOREARM - SIZE III

THIGH - SIZE II (Adjusted to Short Position)
(+.87"" Adjustment possible)

CALF - SIZE II

(After Breslin, C. and Brosseau, P.L., Litton Systems,

Applied Technology Division, unpublished data, 1968)

SHOULDER BREADTH SIZE IV +1.00

SIZE I & II NO CHANGE

LENGTH ONLY

SIZE I -1.20 (Short Adjustment)
II - .60 (Short Adjustment)
IV +1. 35 (Long Adjustment)
V +1.95 (Long Adjustment)
VI +2. 55 (Long Adjustment)

LENGTH CHANGE ONLY

SIZE V + .40

I -1.20
II - .80
III - .40

LENGTH CHANGE ONLY

SIZE1 -1.40
I - .70
Iv+ .70

LENGTH CHANGE ONLY

SIZE1 - .70 (Short Adjustment)
III +1. 56 (Long Adjustment)
IV +2. 26 (Long Adjustment)
V +2.96 (Long Adjustment)

LENGTH CHANGE ONLY

SIZE'1 - .70
III + .60
IV +1.20
VvV +1.80
VI +2.40
’
Inc.;
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Figure 16-11 (continued)

c. Anthropometery of the RX-b Hard Space Suit (continued)

—--18 BICEPS CIRC

-15% CHEST DEPTH

~ 152 WAIST DEPTH
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113 HIP DEPTH
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7 : SIZE I BOOT
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i | |
| SHOE SIZE 83-10}
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Figure 16-11 (continued)

c. Anthropometry of the RX-5 Hard Space Suit (continued)

/= 76§ VERTICAL TRUNK CIRC
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Figure 16-11 (continued)

¢. Anthropometry of the RX-5 Hard Space Suit (continued)
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Figure 16-11 (continued)

d. Mean Centers of Gravity of Pressure-Suited Subjects

it

Nude Unpressurized Pressurized

1. Sitting

Nude Unpressurized Pressurized

2. Relaxed (Weightless)

(After DuBois et al'83))
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Figure 16-11 (continued)

e. Arithmetic Means and Standard Deviations of the Sample Centers
of Gravity and Moments of Inertia (N = 19)

Axis Center of Gravity Moment of Inertia
(in.) (1b. in.sec.
Mean S.D. Mean S.D.
1. Sitting

Nude x 7.89 0.41 56.3 8,22
y L.79 0.27 66.5 9.98

2 9.16 0.29 28.3 5.10

Unpressurized x 8.33 0.39 67.5 9.16
y 4.79 0.27 82.8 11.30

z 9.76 0.30 33.6 5.72

Pressurized x 8.62 0.38 68.8 8.70
y 4.79 0.27 82.4 11.30

z 9.70 0,28 34.0 5.72

2. Relaxed (Weightless)

Nude x 7.34 0.38 99.2 14.20
y 4.79 0.27 89.8 15.20

2 7.39 0.42 31.2 5.04
Unpressurized x 7.81 0.30 118.0 15.30
¥y L.79 0.27 114.0 15.00

z 7.86 0.45 36.2 5.03

Pressurized X 8.08 0.29 118.0 15,20
y 4L.79 0.27 114.0 15.70

z 7.81 0.48 36.1 4.85

Mean Age 27.4 yrs. S.D. Age 5.3 yrs.

Mean Weight 164.6 lbs, S.D. Weight 17.4 lbs.

Mean Stature 69.0 in., S.D. Stature 2.3 in.

Mean Clothing Weight 23.2 l1bs. S.D. Clothing Weight 0.5 1b.

(After DuBois et a1(83))
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Figure 16-11 (continued)

f. Correlation of Moment of Inertia with Stature and Weight
in Pressure-Suited Subjects (N = 19)

Axis Ri,sw S.E.* Io Regression Equation#*
1. Sitting

Nude x 0.95 2.67 -105.0 + 1,595 + 0,317W
¥y 0.91 4.07 -135.0 + 2,105 + 0,344W

z 0.97 1.17 - 70.4 + 0.9235 + 0,212W

Unpressurized x 0.93 3.42 -114.0 + 1.825 + 0.337W
y 0.97 2.77 -181.0 + 2,965 + 0,362w

z 0.97 1.47 - 79.5 +1.095 + 0.229W

Pressurized x 0.93 3.24 -120.0 + 2,065 + 0.281W
y 0.94 3.79 =157.0 + 2,548 + 0,389W

z 0.96 1.53 =~ 78.1 +1.07S + 0.230W

2. Relaxed (Weightless)

Nude x 0.97 3.30 -191.0 + 2,885 + 0,556W
y 0.95 4.60 =265.0 + 4.04S + 0.L61W

z 0.94 1.75 - 46,0 + 0.567S + 0.231W

Unpressurized x 0.95 L.62 =-197.0 + 3.195 + 0.574W
y 0.96 16-38 -217.0 + 3-593 + O. 506w

z 0.96 1.33 - 54.8 + 0,8015 + 0.217W

Pressurizw X 0097 3‘93 -20800 + 301523 + Oo 550w
y 0.96 hobl =254.0 + 4,185 + 0.482W

z 0.96 1.36 - 48,7 + 0.7205 + 0,214W

Pgw = 0.44  S.E. = 2.02 in. S = 59,58 + 0.057W
*I, and S.E. in 1lb.in.sec.?

S 4in in,
W in lbs.

(After DuBois et al(83))
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recommendations regarding minimal volumetric requirements for missions
extending from a few months to a year may be made:

Sleep/rest station volume should not be less than 300 cubic feet per
man and so configured as to sccommodate stowage of spare clothing
(constant-wear garments and flight coveralls), suit-inflation cap-
ability, and donning of the pressure suits.

Work station volume should be dictated by operational requirements

and so designed as to meet the following cirteria:

. Separate from sleep/rest station.

i Contingency functions designed for pressure suited
interface and given priority consideration in location/
placement.

A Individual pressurization capability.

. Unrestricted access to all controls and displays.

. Restraints and tethers to permit performance of all
work functions with two hands if the need should
arise.

. Non-interference between duty station crewmen if

more than one is working.
Air locks and hatches should be designed so that the actuating mechanism
is no higher than shoulder height and positioned for easy visual access
in a standing, 1G position. For umbilical operations, the hatches should
not be less than 31 inches in diameter and for operations with a self-con-
tained life support system they should not be less than 43 inches in dia-
meter to provide easy egress/ingress capability. Air locks should be
designed to an inner diameter of at least 5 feet to provide pressurized
turn-around capability and should contain a handrail or protruding hand-
rails along the axis of body rotation. The air locks themselves should
be designed for operation by one man with simple unlocking/locking
mechanisms, with mechanical advantages for aid in overcoming residual
pressure forces inside the spacecraft, and hinged for rotation to provide
unencumbered access to tunnel areas.

Studies have been performed on the design of air locks and hatches in zero
gravity operations. The subjects were [ilmed during repetitive trials and the
position-velocity time profiles of the maneuvers were analyzed for three simula-
tion modes; ground -normal gravity, aircraft-zero gravity, and water immersion
neutral buoyancy. These simulation studies indicate that:

. A 48'-diameter,6' length airlock passageway with 32" circular hatches is
sufficient, from a space standpoint, for an astronaut to adequately perform
a manual ingress-egress maneuver.

. Counter rotation to applied torques, and movement due to applied linear
forces due to lack of gravity-dependent reaction forces of the body must
be counteracted to insure adequate operation.

° Hatch diameters less than 26" should not be utilized due to impediment
to free travel and suit interactions.
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. Ingress-egress maneuvers in airlocks of 48" diameter or less, requiring
internal turnaround of a pressure-suited astronaut, dictate strengthening
of the suit faceplate to prevent accidental depressurization.

o Airlock hardware requiring operation by an astronaut in a pressurized
suit must be sized to accommodate the lack of tactual and visual ability
concommitant with pressure-suited operations,.

) Airlock passageways should remain as free of hardware appurtenances as
design factors dictate to prevent suit interaction.

Future space vehicles and lunar bases have been studied from the point
of view of workspace. Optimization of laboratories and crew stations for large
orbiting crafts (259 ) and other space vehicles (223) has received preliminary
study. Workspace analysis has been performed for lunar laboratories and bases

(49, 237 ).

Force-Motion Analysis

The range of body motion is an important factor in workspace and operations
analysis. Figure 16-12 shows the joint motion capability of a young male popu-
lation. The recorded motion range in the nude should not be much different for

¥
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ABDUCTION  ADOUCTION
27°18 777

IDILATERAL
ROTATION
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B
=

Range of joint motion in 39 young men, showing the median value in degrees, + 1 standard
deviation. If + 2 SD are taken, 95% of the sample of 39 is included. Compared with the 1950
Air Force survey of over 4000 flying men, this sample is 6.8 years younger, 6.0 Ibs heavier,
and 1.4 inches taller.

Figure 16-12
Joint Motion Capability of a Young Male Population
{After Hertzber and Clauser(164))
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the typical astronaut in shirtsleeve environment. Dynamic characteristics
and range of motions required for operation of lunar scientific equipment are
given in References (115, 184) and in Tables 16-19 to 16-23,

Forces and angular motion exerted on sidearm controllers are noted in
Figures 16-13a and b. Forces exerted on hand controls by male college
students are noted in Figure 16-14a. Design of control devices can be quite
complex. In the Gemini program, rudder pedals were initially envisaged; how-
ever, weight and space limitations forced abandonment of pedals in favor of
placing a third axis on the manual controller (217). Either crew member could
operate the controller while in the restrained position through wrist articulation
and palm pivot motion only, to preclude body movements from being trans-
mitted to the controller. The handle was spring loaded to provide an increas-
ing resistance as the handle was moved away from neutral. Controller force/
displacement originally had a step function designed in all three axes, but was
later revised to a smooth curve as shown in Figure 6-14b for all three axes.
Redundant switches were incorporated for selectivity energizing solenoid
valves in the attitude control system. Total travel of the hand controller was
10 +1 degrees from neutral in pitch and yaw axes and 9 +1 degrees in the roll
axis. Rotary movement of the handle about a transverse axis located at the
palm pivot point effected a corresponding spacecraft motion about the pitch axis.
Rotary displacement in a clockwise or counterclockwise direction in a trans-
verse plane with respect to an adjustable canted axis below the pilot's wrist
effected a similar movement about the spacecraft roll axis. Clockwise or
counterclockwise rotation of the controller about the longitudinal axis of the
handle effected a corresponding movement about the yaw axis. Due to extended
operation in this mode, the resistant stick forces tended to cause wrist fatigue.
Thus, the control stick was modified to assimilate a T at the top. This
enabled the pilot to grasp the top of the stick palm down if desired for more
ease of yaw control. A guard was built up on the top to prevent depressing the
communications transmit buttons while grasping the stick in this manner.
Evaluation of the many attitude controller designs included operation of the
stick with a bare hand, a soft glove or a pressurized glove, as well as con-
sideration of the man pressurized or unpressurized, in zero-g or under heavy
re-entry g loads. The attitude controller worked best in conjunction with a
rotary mode selector slightly forward and left of the stick. This was needed
to allow the pilot minimal three-axis response for fine maneuvering such as
docking (pulse) or larger orders of magnitude in response for gross correc-
tions (rate command or direct). The modes made available to the pilot were:

a. HOR SCAN - The horizon sensors provided a reference in pitch and
roll to automatically control a limit-cycle mode +5 degrees in these axes.
The yaw axis was maintained by the pilot using the pulse mode which was
maintained on all axes in this mode.

b. RATE CMD - Pitch, roll and yaw rate gyro outputs were compared with
controller positions to produce attitude rates proportional to controller deflec-
tion. (Operationally, this mode was effective in correcting the fairly high cross-
coupling rates developed when the maneuver controller was used to translate.)

c. DIRECT - Provided direct control to open thrust chamber solenoids
when the attitude controller was deflected approximately 25% of full travel.
(The utmost discretion was used in this mode, as it tended to waste fuel.)
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Figure 16-13
Forces Exerted on Side-Arm Controllers

(After Hertzberg and Clauser!!64))

T A
I Arm rest
Distance A Distance B, Maximum controller angle (unconstrained), deg
n- i Right Roll Left Roll Forward Rearward
Pilot Pitch Pitch
Measured at elbow angle of -
90* 130* 180* 90° 130° 90° 130° 90° 130° 90° 130° 90° 130°
1 15.00 | 19.00 | 26.25 13.00 12.50 105 105 80 75 45 35 30 40
2 11.50 |18.00 } 25.00 12.75 11,50 90 100 90 100 65 70 3o 30
3 13.00 |18.00 | 25.00 13.00 12.00 90 90 90 95 55 60 30 35
4 12,00 | 18.00 | 25.00 13.00 12.00 85 85 75 80 50 45 30 30
5 14,00 |18.50 | 26.00 13.00 12.50 90 95 90 100 60 65 30 30
6 14.50 }18.50 | 27.00 13.75 13.75 90 100 90 100 75 55 45 40
7 12.50 ] 18.00 { 25.00 12.75 11.50 90 ] 105 105 70 75 30 30
8 13.50 [18.50 | 27.00 13.25 13.00 100 95 100 100 80 5 30 30
9 13.30 18.50 27.00 13.25 13.00 80 90 105 105 45 45 40 40
10 13.00 [17.50 | 27.50 13.75 13.50 90 100 90 105 75 65 55 55
11 14.50 {18.75 | 28.50 13.25] 13.75 90 105 380 105 60 5 30 30
Average | 13.35 |18.30 | 26 30 13.15 | 12.63 91.8 96 91.4] 97.3 61.8 60.4 34.5] 35.0

Measurements of the arms of pilots using a mockup of a side-arm controller, and of the
unconstrained angular deflections they could achieve in roll and pitch with the controller.
Data were taken with the arm straight or flexed as shown. The preferred neutral position
for the controller was found to be 8° to the right and 15° forward of the vertical. The
preferred arm position was a slight forward extension from 90°.
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Figure 16-13 (continued)
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Source: Brissenden (33)

These graphs show the forces the pilots could develop at two elbow angles. They were
instructed to apply the following levels of exertion:

{1) Operational force - chosen as the comfortable level for continuous control
maneuvers.

(2) Maximum Operational force - acceptable for short periods, applicable to any
maneuver requiring maximum control capability.

(3) Maximum force - the greatest force pilots could exert in each grip position.
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a. Forces Exerted on Hand Controls

Figure 16-14

Design Factors for Hand Controls in Spacecraft

Vertical Handgrip

N =55

Right Arm Left Arm
Elbow Elbow
Direction angle Percentiles Direction  angle Percentiles
of force (deg) 5th 50th 85th S.D. of force (deg) Sth 50th B5th S.D.
Pugh 80 34 92 150 s Push a0 22 % 164 31
20 38 86 154 kK] B8O 22 a3 172 35
20 36 103 172 43 120 28 2] 180 42
150 2 123 194 45 150 30 111 192 48
180 50 138 210 49 180 42 128 198 47
Pull 80 24 63 4 23 Pull a0 28 84 110 23
20 kY [L] 135 a0 (44 32 80 122 28
120 42 104 154 31 120 34 -2} 152 34
150 58 122 189 36 150 42 112 188 37
180 52 120 171 37 180 50 118 172 37
Left 80 20 52 a7 18 Lett 60 12 32 62 17
20 18 50 87 23 20 10 33 72 19
120 22 53 100 28 120 10 30 68 18
150 20 54 104 25 150 8 29 66 20
180 20 50 104 26 180 8 30 84 20
R.ght a0 17 2 82 20 Right 60 17 50 83 21
90 16 37 88 18 80 18 48 87 22
120 15 34 82 17 120 20 45 89 21
150 15 33 84 18 150 15 47 113 27
180 14 34 62 24 180 13 43 02 22
Up 60 20 49 82 18 Up 60 15 44 82 18
$0 20 56 108 22 i:1t] 17 52 100 22
120 24 60 124 24 120 17 54 102 25
150 18 568 118 28 150 15 52 110 27
180 14 43 88 22 180 ] 41 K] 23
Down 60 20 51 88 2] Down 60 18 48 76 18
80 26 53 88 20 80 21 40 22 20
120 28 58 8 23 120 a1 51 102 23
150 20 47 80 18 150 18 41 T4 16
180 17 41 82 18 180 13 35 kt} 15
Source: Hunsicker (171)
Horizontal Handgrip
N =30
Right Arm--Wrist Pronated Left Arm--Wrist Pronated
Elbow . Elbow
Direction angle Percenliles Direction angle Percentiles
of force (deg) 5th 50th 85th S.D. of force {deg) Sth 50th 95th S.D.
Push 60 40 (-1} 156 38 Push 80 33 a6 138 35
80 25 85 100 14 90 27 80 83 28
120 23 46 70 15 120 17 43 71 17
150 18 40 66 18 150 15 37 89 18
180 17 32 59 12 180 12 32 S8 13
Pull [14] 13 7 50 18 Pull 60 20 38 64 18
80 14 32 54 13 80 17 31 83 18
120 13 26 43 10 120 12 30 56 14
150 12 29 48 10 150 15 32 52 t3
180 11 28 48 12 180 18 34 61 rs
Lert 60 19 41 72 19 Left 60 20 42 86 15
80 12 a1 64 1§51 80 17 3 60 12
120 ? 28 53 13 120 17 4 53 8
150 9 21 g 11 150 17 31 54 11
180 10 19 34 7 180 s 28 41 8
Right 80 18 48 73 18 Right 60 18 36 51 15
90 16 a9 58 1% BO 13} 27 54 1
120 34 47 11 120 10 22 39 10
150 18 R 45 7 150 9 23 5] 16
180 18 3 57 13 180 10 20 49 13
Up 60 23 49 70 20 Up 60 22 57 100 22
90 23 89 112 28 80 37 7 123 24
120 41 21 138 kI 120 45 91 145 30
150 49 29 185 38 150 58 100 158 32
180 s LH 158 35 180 4 10} m
Down 80 23 Bl 158 s Down 60 18 T4 139 as
[ 22 83 142 3s 80 a3 75 136 3
120 37 82 181 kL] 130 9 75 148
150 40 20 15¢ k1 150 g 7 138 19
180 41 a7 143 31 180 M 78 138 31

Source: Hunsicker (172)

Controls designed to be actuated by human force should be operable by the weakest
individuals of the using population but able t
strongest individuals of the using population
forces (measured in pounds) exerted on verti
students, tested in a seated position.

o withstand the maximum force the
can apply. The tables show the maximum
cal or horizontal handgrips by male college
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Figure 16-14 (continued)

b. Hand Forces for Attitude Control in the Gemini Spacecraft

{original ( — } and revised (----)
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d. PULSE - For each deflection of the controller away from the center

osition, a single short duration (20 msec) pulse was applied to the appropriate
X18.

€. RATE CMD, RE-ENT - Similar to rate command with a wider neutral
and and gain crossfeed from roll to yaw. (Designed for use in manual re-entry.)

f. RE-ENT - Pitch and yaw axes in rate damping control mode, with roll
xis slaved to bank-angle commana from the computer.

g- PLAT - ACME accepted attitude information from the platform and
rovided outputs to the thrusters to maintain spacecraft attitude automatically
rithin pitch, yaw and roll deadbands.

h. PARA - A mode designed for use with a paraglider which was eliminated
efore the first manned flight. (On Spacecraft V and up, this selector position
'as used for the PLATFORM mode. )

Arm strength with elbow flexion is recorded in Figure 16-15, Leg strength
s recorded in Figure 16-16 and lifting strength in Figure 16-17. Cranking

peeds and other motion factors for shirtsleeved males have recently been
eviewed (71).

A handbook of control design for pressure-suited subjects has been pub-
shed (295). Controls and displays used in Gemini have been reviewed (217,
31). Data are available on static¢ and dynamic factors in design of wheeled
ehicles for terrestrial (56) and lunar operations (132, 140); also, for manned
pace-simulation chambers (9, 10, 15, 58, 218, 227).

Complex motor control and integration of man into the machine control
yop has received much study in relation to aircraft and spacecraft problems.
everal major reviews and Symposia are available (References 7-532, 7-694,
-689) and (178, 238, 257, 262, 302, 317, 343, 345, 373). A Soviet review of
iis subject has also been presented (78). General assessments of optimal
iman performance in space systems have been made (238, 239, 292). More
secific human control studies have been made of spaceflight tasks. These
iclude: manual space navigation (242), orbital docking of large attitude-
:abilized components and other systems (59, 272), lunar landing vehicles
‘9, 179, 205). The visual aspects of rendezvous and docking control has
*en reviewed on pages 2-96 to 2-108 of the section on Light, (No. 2). Finally,
udies on the simulation of lunar missions with emphasis on learning and re-
ntion of complex skills have been published (69) and Reference (7-254).

Human performance in the different acceleration environments including
ibgravity and zero gravity has been covered in Oxygen-CO2-Energy, (No. 10)
d in Acceleration, (No. 7). Effects of training on the performance of motor
tills during the Gemini EVA were reviewed on pages 7-129 to 7-154. Train-
g plans for Apollo are available (248). Soviet studies of responses to intra

id extravehicular exercise in Voskhods I and II are now published. (See also
:ges 7-131 and 7-132,)

Human factors in the assembly and maintenance of large space structures

‘e under current study (282, 372). The effects of human motions and forces
1 the stability of orbiting vehicles have been simulated (81, 321).
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Mean values and standard deviations for the strength of pulling, lifting, pushing, and
fowering with each arm and with the elbow flexed at the angles indicated, on the

right. The sample group was 55 college men, selected to approximate the character-
istics of aircrewmen. Testing was done with a strain gauge dynamometer to record

the forces on the isometric handgrip (which does not move appreciably).

Source: Hunsicker(””, additional data may be found in Morgan et al(224)

Figure 16-15
Arm Strength with Elbow Flexion

(After Hertzberg and Clauser(164})
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PEDAL PRESSURE - Ib

Figure 16-16

Leg Strength

{After Hertzberg and CIauser“G‘”)

a.
180
160 37" cockpit } Floor
39" (average) to \<
41"" cockpit | Eye level
140
Foot rotation forces on an aircraft brake
120 pedal measured at various angles of the
Extended Log brake pedal in neutral and extended leg
100 Position positions. Floor to eye height was also

varied from 37 to 41 inches. Data are
averages of 100 subjects.

Source: Hertzberg(162))
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The static lifting forces applied against dynamometers by 13 subjects with knees variously bent

as shown by the scale of knee angles. The central line shows average values, and the outer dashed
line shows the range of forces. In addition, subjects were tested in dynamic lift, shown by the
two shaded areas, using bar bell weights on their shoulders, Maximum rise from full squatting
posture is shown in the left hand shaded bar as the maximum angle of knee extension. The
right hand shaded bar shows the “angle of break,”” determined by starting with weights on the
shoulders and a fuli standing position, then gradually squatting until the leg could no longer
restrain the motion and a rapid downward motion began.

Source: Swearingen et a1{318)
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The variations in lifting strength as different lifting tasks are measured. Each of the three
types of lift shown is plotted on a probability grid to show the percentile performances.
Note the low values for lift when an awkward load (the ammunition case from the F-86H
aircraft) must be raised. Note also the very high values when the strong leg muscles are
ideally employed, as shown in the upper set labeled ‘‘Leg Lift". Here, not only the hands
were used to grip the dynamometer bar; a special beit and fastener helped transfer the force
to the handle. These data may be of value in planning post-landing survival maneuvers.

Adapted from Catheart et a|(52)' Clarke(64), and Emanuel and Chaffee(go)

Figure 16-17

Lifting Strength

(After Hertzberg and Clauser(164))



Plane Definitions: Direction_of Limb Movement Terms:

a. (Y - Z Plane) - Frontal Plane a. Forward = +X Direction
b. (X - Z Plane) - Sagittal Plane b. Backward = -X Direction
¢ (X - Y Plane) - Transverse Plane c. Upward = -Z Direction
-4 _—
Type of Limb Movement Terms: d. Downward Z Direction
e. Right = +Y Direction
a. Flexion - Bending or decreasing the angle f. Left = ~Y Direction

between parts of the body.
g. Lateral = Away from {X-2) plane
(in Y-Z plane)

h. Medial = Toward {X-2) plane {(in Y-Z plane)
i. Abduction = Away from {X-Z) plane

b. Extension - Straightening or increasing the
angle between parts of the body.

c. Stretch - Lengthening of body part.
Rotation - Revolution about the axis of

(in X-Y plane)
a body part. .

Pr . E - Adduction = Toward (X-Z) plane
e. onation - Face down. (in X-Y plane)

f. Supination - On back or Face up.

Figure 16-18

Terminology and Definitions for Describing the Mobility
of the Pressure Garment Assembly

(After NASA336))
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Extravehicular Garments and Mobility

Special consideration must be given to anthropometric factors in planning
extravehicular mobility. Suggestions have been made regarding critical areas
in the design of the Apollo Extravehicular Mobility Unit (EMU) which consists
of the following subsystems (336): Pressure Garment Assembly (PGA), Con-
stant Wear Garment (CWG), Liquid Cooling Garment (LCG), Thermal and
Meteoroid Garment (TMG), Extravehicular Visor Assembly (EV A), Portable
Life Support System (PLSS), Emergency Oxygen System (EOS).

Design features should prevent impediments to astronaut in the performanc
of his tasks which include:

° Donning, doffing and checkout of applicable EMU subsystems within
the command Module (CM) (185).

Py Donning, doffing and checkout of the TMG, EVA, PLSS, and EOS
within the LEM in both a pressurized and depressurized cabin (185).

° Egress and ingress through all the CM or the LM hatches in free
space and/or {for LM only) on the lunar surface while carrying
scientific or maintenance equipment (207, 346). (See discussion on
page 16-36.)

° Descending and ascending LM vertical ladders (309).

® Walking over the lunar surface while carrying assorted tools,
scientific and navigation equipment (Figure 7-73) (290, 309).

® Performing various scientific experiments on the lunar surface such
as hook-up and emplacement of passive recording instruments, seis-
mometers, geophones, radiation detection devices, magnetometers,
power supplies; setup and operation of cameras, levels, transits,
stud guns; collection and packaging of lunar soil specimens, etc.
(115, 184, 185) (Figure 7-73).

° Performing specific mobility tasks on lunar surface, unassisted,
such as crouching in a deep knee bend; kneeling on one and/or both
knees; crawling forward and backward; getting up from a prone or
supine position; bending and picking up small objects on the ground
without kneeling (309).

Analyses of many of these tasks have been presented under performance in
zero and subgravity of Acceleration, (No. 7). Intra and extravehicular activi-
ties of suited subjects in Gemini have been covered in great detail by NASA
reviews (216, 231).

Pressure Garment Assemblies (Soft and Hard Suits)

The Pressure Garment Assembly (PGA) is an anthropomorphic pressure
vessel encompassing the entire body. The Assembly is individually sized to
the existing astronaut population (Figure 16-4). The PGA is tailored as closel
as possible to actual body contours and to necessary internal PGA components
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and should provide break points at natural body break-points to enhance mobility
and reduce excessive bulk. The crewman should be comfortable in a pressurized
PGA, fully restrained in the Command Module couch under the effect of a sus -
tained acceleration of 5 g's, +GX, eyeballs in. It has been recommended that

the following exterior dimensions not be exceeded:

1. Across shoulder: 23-3/4 inches;
2. Across elbows: 23-3/4 inches;
3. Across knees: 16 inches.

The combined center of gravity of the PGA and the crewman should be lo-
cated within two (2) inches vertically and one (1) inch horizontally of the CG of
a nude, standing crewman as noted in Figures 16-6, 16-7, and 6-11.

The mobility requirements for the PGA are described in terms of the
terminology and definitions provided in Figure 16-18. The types of mobility of
concern to PGA design include the following:

A Elementary movements, or movements of the body, limbs, or head
in one plane.

L Complex movements, which are movements of the arms, wrists,
hands and fingers which require a high degree of psychomotor
coordination and movement in more than one plane (295).

b Total body movements, which include movements involved in
walking, lifting objects, etc.

. Suit equilibrium positions, which are positions the garments tend
to seek when no torque is being applied to the joints.

The movements of the head, body, limbs, and/or elementary movements,
which the astronaut should be capable of performing with the PGA vented or
pressurized to 3. 7+. 2 psi are indicated in Table 16-19. This table indicates
the minimum range of movement in degrees for each of the movements and
the maximum torque in inch-pounds (or foot-pounds) required to initiate and
sustain the movement.

The complex movements of the arms, wrists, hands, and fingers which
the Apollo crew should be capable of performing both extravehicularly and
intravehicularly with the suit pressurized to 3.7 +.2 psig are indicated in
Tables 16-20 to 16-22. The coordinated movements of the torso, arms, legs,
hands, feet, and head such as are required during lunar surface operations
and during the extravehicular phase of orbital flight with the suit pressurized
between 3.5 and 3.9 psig are indicated in Tables 16-22 a and b. Data for the
design of equipment and altered movement patterns resulting from zero gravity
have been covered in the section on zero gravity in Acceleration (No. 7).

As general anthropomorphic factors in the design of extravehicular gar -
ments, the following have been suggested ( 336 ). If equilibrium positions
exist for the garments, i.e., positions into which the garments will spring to
or seek if no restrictive force is applied by the crewman in the EMU, they
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Table 16-19

Maximum Performance Requirements for the Elementary Body Movements
Intravehicular and Extravehicular Wear, Vented or at 3.7 Psia

(After NASA-CSD-A-096(336})

MOVEMENTS RANGE OF MOVEMENTS MAXIMUM TORQUE
{in degrees) REQUIRED

A. NECK MOBILITY
Flexion {forward-backward) 120 0
Flexion (left-right} 30 0
Rotation (Abduction-Adduction) 140 0
8. SHOULDER MOBILITY
Adduction 45 1 ft. lbog
Abduction 125 1 ft. ibg
Lateral - Medial 150 1 fr Ibg
Flexion 170 1 ft. Ibg
Extension 50 1 ft Ibg
Rotation (X-Z Plane)

Down-up 135 1 ft. Ibg
Rotation (Y-Z Plane}:

Lateral Rotation 35 1 ft. by
Medial Rotation 95 1 ft. lbg
C. ELBOW MOBILITY

Flexion - Extension 140 1 ft. Ibg
D. FOREARM MOBILITY

Supination (Palms up) 90 .2 ft. Ibg
Pronation (Palms down) 75 2t lbg
E. WRIST MOBILITY

Palmar Flexion 75 2 fr. by
Dorsiflexion 65 2 ft. Ibg
Abduction 50 .2 ft. Ibg
Adduction 30 2 ft. Ibg
F. TRUNK - TORSO MOBILITY

Trunk Rotation (abductien - adduction} 70 2 ft. lbg
Torso Flexion (lateral - medial} 50 2 ft. lbg
Torso Flexion {forward) 90 2 fu Ibg
Torso Flexion (backward) 25 2 ft. Ibg
G. HIP MOBILITY

Abduction {leg straight) 45 2 ft Ibg
Adduction (knee bent} 30 2 ft. Ibg
Abduction (knee bent) 35 2 ft. ibg
Rotation (sitting):

Lateral 30 2 ft. Ibg
Rotation ({sitting):

Medial 30 2 ft. Ibg
Flexion 115 2 fr. b
Extension K3 2 ft. Ibg
H. KNEE MOBILITY
Flexion (standing) 110 1 ft Ibg
Ratation (medial) 35 1 fr. Ibg
Rotation (lateral) 35 1 ft. Ibg
Flexion {kneeling) 155 1 . Iy
J. ANKLE MOBILITY
E xtension 40 3.0 fu. Ibg
Flexion 35 3.0 ft. Ibg
Abduction 25 3.0 ft. Ibg
Adduction 25 30 fr. ibg
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Table 16-20

Elemental Movements of the Wrist, Hands, and Fingers

Required in Apollo EMU Operations

(After NASA-CSD-A-096(336),

Movements Description of
or Perfox!)ma::ce Intravehicular Extravehicular
Operations 0.18 PSIG 3.5-3.9 PSIG
Palmar Write legibly with pencil X b x
Operate . 375" dia. rotary knob X x x
Utilize small screwdriver x X X
Tip Pick up small objects as:
Prehension - Small screws X x
- Small rocks x
Lateral Operate 2 and 3 position space-
Prehension craft toggle switches
- Vertically x X x
- Horizontally X x x
Grasp Use a screwdriver x x x
Use pliers x X X
Use crescent wrench x x x
Use socket wrench X X x
Use hand-controller x x
Finger: Operate pushbutton within
Pushbutton panel of pushbuttons X X x
Ops.
Finger: Operate T -handle control X X x
Pulling Operate D-handle control x x x
Ops. Operate ring handle control x x x
Thumb Operate thumbwheel x x x
Operate button on control handle x x
Hand Operate discrete position x x x
Rotation rotary switch
Wrist Move wrist side to side while
Movements opening and closing fingers x x x
Move wrist up and down while
opening and closing fingers x X x
Whole Hold hand at any desired
Hand position x x x
Movement

Intravehicular wear = CWG and PGA

or
LCG and PGA

X 7 required
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Table 16-21

Movements of the Wrist, Hands, and Fingers Related to the Intravehicular Operation
of the Pressure Garment Assembly in Apollo

(After NASA-CSD-A-096(336))

Components of PGA 0. 18 PSIG (Suit Ventilated) N 3.5-3.9 PSIG
Defining the Complex CM CM LEM M CM LEM
Movements Requirements (Couch Pos.) (Vert. Pos.) (Vert. Pos. y {Couch Pos.) (Vert. Pos.) (Vert. Pos.}
1. Helmet Ring Disconnect x x x
2. EV Visor Positioning
3. EV Visor Attachment x X
4. Medical Injection
Fitting x X X x x X
5. PLSS Controls and
Attachments X x x x
6. EOS Controls x %
7. Multiple Gas
Disconnect x x x X X X
8. WMS Disconnect X X x x X x
9. Multiple Water
Disconnect x X X x
10. Electrical Disconnect X x x x x x

x = required

* Provided there is no interference from the restraint harness.

Table 16-22

Complex Total Body Mobility Requirements Required for Intravehicular and Extravehicular
Phases of Apolio at 1/6 G and Zero G

(After NASA-CSD-A-096!336))

a. Total Mobility Performance Criteria at 1/6 G, PGA Pressurized to 3.6 to 3.9 Psig

1. Climb ladder at slopes up to 27° with rungs spaced every 8 inches.

2. Remove equipment from LEM with LEM at 27° position.

3. Crouching in a deep knee bend for three minutes.

4. Kneeling on one knee for five minutes and working in kneeling position.

5. Crawling forward 5 feet, then backward to starting point.

6. Getting to and up from supine and prone positions (unassisted) within 30 seconds.
7. Pickup and carry 2nd astronaut.

8. Walking erect on 3° inclined treadmill at 3 mph for 10 minutes; jumping

over small crevices; taking long strides.
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Table 16-22 (continuted)
a. Total Mobility Performance Criteria at 1/6 G, PGA Pressurized to 3.5 to 3.9 Psig (cont.}
9. Bending over to reach and pick up small objects on ground without the
necessity of kneeling.

10. Operate PLSS controls.

11. Moving from standing erect to sitting position (unassisted) without making
suit adjustments.

12. Lift without squatting.

13. Donning extravehicular wear with agsistance,as necessary,while pressurized.
This includes:

a. External Thermal Garment (ETG) (including boots, garment
b. and supplementary visor)
c. Meteoroid Protection Garment (MPG)
d. Portable Life Support System (PLSS)
e. Emergency Oxygen System (EOS)
14, Forward reach while in kneeling position and torque at distance obtained.
15, Crawl face up or down thru LEM access hatch,.
16. Capability to bend down in LEM and shut and lock LEM hatch,
17. Operate overhead hatch.
18. Change LiOH cannisters.
19, Handle equipment in torso-bent position in restricted area.
20. Self donning PLSS.

b. Complex Mobility Performance Criteria at Zero G

Operate stem unit (transfer).
Handle equipment and carry out tunnel transfer.
Don Extravehicular Mobility Unit

BWwoN e

Work at navigation and Guidance Consoles in the Command

and Lunar modules.

W

Handle Portable Life Support System in Lunar module

6. Access to Command Module lower equipment bay and
capability to handle equipment.

Capability to carry out couch operations in Command Module.

8. Capability to carry out free space transfer,
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should correspond as closely as possible to the '"natural" position for each
related task. Design should be compatible with the quick donning requirements.
Closing and sealing operations should be possible without requiring assistance
and/or while donning in the dark. Design should permit donning within a single
time period of at least fifteen minutes without assistance in an illuminated CM
while at zero gravity. Design of elastic and foamed garments to replace pres-
surized suits has been suggested (161, 270, 346).

The following features may act as aids to facilitate donning of the PGA:

. Non-bunching, low bulk, inner layers which are resistant to dimensional
buildup.
. Smooth inner surface containing no pockets, flaps, or discontinuities.

Incorporation of positive alignment devices for engaging mating parts.

. Minimum number of components requiring connections prior to pressuri-
zation.
. Positive indications of correct installation of mating parts.

e Engagement of a locking latch at the neck should be accomplished with a
force of no more than 10 pounds.

Within the pressure garment, the liquid cooled garment, L.CG, should be a
moderately form-fitting flexible garment encompassing the entire body with
the exception of the head and hands. (270 ) It should resist bunching, not bind
or restrict the crewman or cause pressure points, and be constructed of ab-
sorbent loose weave material to permit capillary wicking of body moisture for
evaporation. The flexible liquid coolant tubes should be located in a pattern
which assures intimate contact with the typical astronaut skin surface at all
times. (See section on liquid-cooled garments in Thermal Environment No. 6).

In the Apollo program it is planned that the Thermal-Meteoroid Garment
(TMG) will encompass the entire EMU with the exception of the PLSS and the
helmet assembly which will incorporate separate thermal and meteoroid pro-
tection (270 ). The TMG will consist of a parka, trousers, a pair of lunar
boots and a pair of mittens. It will be conformal to the PGA and not contain
excessive material which may cause folds or bunching. The outer layer of the
TMG will be abrasion resistant, particularly in the area of the knees. The
performance of the TMG should not be altered by adhesion of lunar dust. Pro-
vision should be made for the attachment of indicators and dosimeter devices
in the areas which are readily accessible to the crewman during the lunar
surface mission. Access should be permitted to the intravehicular -extravehicu
lar controls, displays, connectors, and adjustment devices while in a pressure-
ized PGA as noted in Tables 16-19 and 16-20. Design of the meteoroid garment
of Gemini is covered in Pressure (No. 12) and reference (216 ). Data for the
design of radiant insulations of the TMG are covered in Thermal Environment
(No. 6); and for meteoroid protection, in Pressure, (No. 12).

A detailed analysis of the several different Gemini suits has been published

(217 ). Data are also available on current prototype suits. The range of weigh
volumes, mobilities and visual fields attained in prototype Apollo suits are
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overed in Table 16-23 (75, 185, 206, 270 ). Table 16-23 a and b review
:omponent weights of the soft and hard suits. Table 16-23 c gives the gaseous
‘olumes of individual components of hard and soft suits (276 ). The residual
'olumes of Table 12-19 represent the volumes remaining in the suit after dis -
‘'uption of major seals. The total gaseous volume of a typical soft suit and
°LSS (excluding respiratory tract of the astronaut) is 28 liters. The gaseous
‘olume of the soft-suit helmets vary from 2 to 3 liters. The total gaseous
‘olume of a typical hard suit and back pack is about 75 liters. The helmet

f the hard suit is a hemisphere of about 12 inches in diameter. The total
'olume of the helmet is about 7400 cc; the volume of the head, about 3000 cc;
-nd the free gaseous volume inside the helmet, about 4400 cc. Table 16-23c
1so gives the orifice areas at major seals and cross section areas of the body
-t seal sites. These data can be used for calculating pressure decay curves
luring explosive decompression (276 ).

Figures 23-d and e cover range of mobilities for 3 different soft suits.
Vearing the LCG, the test subject was appropriately positioned and restrained
n the mobility-notation table, and the angular excursion for the following move -
nents were obtained for the unsuited, vented, and pressurized (3.7 psig).
Tigure 12-23 e presents data on restriction of movement relative to the nude.
Jsing these data, and a weighting system developed for this study (185 ) the
space suits were rated as follows: In the vented condition, suit C ranked first,
sjuit A second, and suit B third; pressurized to 3. 7 psig, suit A ranked first,
suit C second, and suit B third, In a final rating for the angular-range study,
suit C ranked first, suit A second, and suit B third. After studying the strob-
scopic motion series and viewing the movies of mobility sequences, the three
space suits were rated by the evaluation team. For the 3.7 psig condition,
vith and without the TMG, suit A was ranked first, suit C second, and suit B
hird. The two evaluations (angular-range study along with the strobe and
novie sequences) were considered together in arriving at a final rating on
jeneral mobility. Since the strobe and cine sequences included a broader

Table 16-23

Range of Weights, Volumes, Mobilities, and Visual Fields
Attained in Prototype Apollo Space Suits

a. Component Weights of Prototype Apollo Soft Suits (in grams and pounds)

Type of Helmet with Gloves, Limb-torso PGA EV Visor Water Constant wear
suit communications pair suit (a) assembly garment garment

Suit B 1865 4945 10 870 13 2295 1325 1483 268
4.10 1.89 2.3 29.2 2.94 3.26 .59

Suit A 1216 638 10 590 12 444 1007 0 0
2.68 1.40 23.3 27.4 2.22

Suit C 1203 649.5 8 7305 10 583 1169.5 b1029.5 312
2.65 1.43 19.3 233 257 2.26 .69

aweight of PGA respresents sum of weights for helmet, gloves, and limb-torso suit.
bweight included no connectors.

(After Jones“85))
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Table 16-23 (continued)

b. Weight of Hard Suit Components (in pounds)

Micrometeoroid
Protection
RX-3 Current (Honeycomb

Component RX-2A Goals  Estimates Layup)
Helmet and Sun Visor 3,67 4.5 5.0 0.5
Gloves 1. 30 1.0 1.0 -
Wrist Joints - 1.0 1.6 -
Lower Arm 1.04 1.2 1.4 0.2
Elbow Joints 2. 80 1.0 1.0 -
Upper Arm 2. 30 2.0 2. 4 0.2
Shoulder Joints 7. 34 6.4 6.4 -
Torso, Upper 9.85 4.8 4.8 0.1
Torso, Lower 5. 80 5.2 5.2 0.1
Waist Joint 6. 26 5.1 5.1 0.1
Body Seal Mechanism 4.76 1.5 1.5 -
Pants 3. 94 2,9 2.9 0.1
Thigh Joints 10. 52 8.0 8.4 0.
Knee Joints 5. 48 3.6 3.6
Calves 3. 24 3.0 3.0 .4
Ankles 3. 40 1.0 2.2 -
Boots 4,08 3.0 3.0 -
Internal Pads

and Ducting 4. 37 2.8 2.8 -
Misc., {Head rest —

inter -com, connec-

tors, etc.) - 2.0 2.0 -

Total 80, 15 60.0 63.3 3.6

RX-3 Suit Weight minus Micrometeroroid Protection - 59.7
Shoulder Breadth of Both Suits - 23 inches

Leakage Rate — 25 Scc/min (2.1 x 103 cfm)

Maximum Joint Torque - 0.28 m-kg (2.0 Ib-ft)

(After Litton Industries(206))
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Table 16-23 (continued)

c. Effective Volumes and Crifices During Explosive Decompression

of Soft and Hard Space Suits by Seal Disruption

Critical Volumes

Total free volume of suit,
PLSS, and hoses

Free volume of helmet

Free volume in PLSS and hoses
(2 hoses, 3/4" ID, and 2 1/2
feet and 6 feet long)

Free volume of suit
below neck ring

Neck Seal
Diameter of seal
X-area

Angle of elevation of seal

X-area of neck subtended by seal

Orifice at neck seal

Wrist Seal

Diameter Seal

X-area of seal

X-area of wrist at seal

Orifice at wrist seal

Thigh Seal

Diameter

X-area seal

X-area of lower thigh
Orifice of thigh seal

(After Roth (276}

Apolio
Soft Suit

28 liters
~2.5 liters
3. 8 liters

22 liters

9% ID

411 cm2
17°

116 cm2

2

295 cm

4" 1D

2
8l1.4 cm
21.5 cm2
60 c¢cm

Apollo
Hard Suit

75 liters
4.4 liters
3. 8 liters

67 liters

11,8" ID
706 cm2
40°

145 crn2
561 cm2

3.87" ID
76 cm2
2
21.5 cm
2
54 ¢cm
(RX 4 and 5)
7 7/8"
2
314 ¢m
137 cm2

177 cm2
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Table 1623 (continued)

c. Effective Volumes and Orifices During Explosive Decornpression
of Soft and Hard Space Suits by Seal Disruption {(cont.)

Apollo Apolio
Soft Suit Hard Suit
Ankle Seal (RX 3 and 4 only)
Major axes of ellipse - 59/16'" and
7 5/32"
X -area of seal - 207 cm2
Ankle area - 39 cm2
(6 1/2" from ground)
Orifice at ankle seal - 168 cm2
Waist Seal
Diameter - 16" ID
X -area of body seal - 1300 cm2
Area of abdomen - 490 cm2
{1 above umbilicus)
Orifice at waist seal - 810 cm2
Fingers
Diameter of glove finger 1" 1D 1" 1D
X-area of glove finger 5.1 cm2 5.1 cm
X-section of finger 3,29 cm 3.9 cm2
(1/16" clearance)
Orifice at finger 1.2 c:m2 1.2 (:m2
Gas Umbilical Hose from
Space Chamber
Diameter 1 1/4" 1 1/4"
X-area 7.9 cmg 7.9 cm
Gas Umbilicals from
PLSS
Diameter 3/4v 3/4"
X-area per hose 2.8 cm2 2.8 cm2
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Table 16-23 (continued)
d.  Summary of Mobility Table Analysis of 3 Prototype Apollo Soft Suits
Percent of motion: nude to vent
Angles of excursion and vent to 3.7 psig
Suit C Suit A Suit B Suit C Suit A i
Movement Nude u ui ui Suit B
a. se -
line 3.7 3.7 3.7 | Nto Vv Vito PNto VI[Vto AN to V|V to P
v . : T,
deg ent psig Vent psig Vent psig (b} {c) (b) (c) (b) (c)
1. Forearm,
supination-pronation 180 1194 | 175 | 168 179 | 180 | 180 100 90 93 100 [00 100
2. Wrist,
flexion -extension 160 |178 | 132 140 125[ 146 | 132 100 74 87.5 89 91 90
3. Hip, adduction-
abduction 180 41 32 35 15 40 35 23 78 19.4 43 22 87.5
4. Hip, flexion-
extension 120 | 90 40 80 65 70 62 75 45 67 81 58 89
5. Shoulder,
flexion -extension 250 (216 | 190 | 182 | 168 160 ] 139 86.5 88 73 92 64 87
6. Shoulder, frontal plane,
adduction -abduction 155 [115 95 {125 ] 117 80 86 74 83 81 94 52 100
+ Shoulder rotation 160 [170 | 204 [185 | 165 ] 164 | 150 100 100 {100 89 100 91
8. Elbow, flexion-
extension 150 [167 1 106 |162 | 150 | 145 | 127 ] 100 63 100 93 97 88
9. Wrist-forearm,
flexion -extension 120 (125 | 112 105 89 98 | 105 100 90 87.5 85 82 100
10. Hip, rotation 133 |130 | 101 125 1 106 | 126 78 98 78 94 85 95 62
l1. Ankle, flexion-
extension 78 | 79 82 70 56 68 70| 100 100 |90 80 87 100
12, Trunk, rotation 100 | 70 60 48 70 60 48
13. Shoulder, transverse
plane, adduction-
abduction 193 |168 | 121 112 } 102 | 118 | 132 87 72 58 91 61 100
14, Knee, flexion-
extengion 140 1160 [ 125 1143 | 145 | 135 | 130 100 78 J100 100 96.5 96
5. Foot, flexion 43 | 53 100
n6. Trunk -hip,
flexion -extension 68 | 80 44 54 100 65 79
$7. Trunk-hip,
lateral flexion 78 | 50 32 16 64 41 21

35eventeen movements are

bNude measures compared with vent measures.

Cvent measures compared with pressurized measures.

{After Jones“gs))

described in the paragraph entitled “Angular range study’ in Ref.(185).
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Table 16-23 {continued)

e. Angular Data for Restriction of Pressurized Joint Mobitity and Suit-Joint
Interface of Three Prototype Soft Suits Relative to the Nude Condition
Suit C Suit A Suit B
—
Percent Percent Percent
3.7 A at 3.7 A at 3.7 . at
Movement Nude psig Diff. 3.7 Nude‘psig Diff. 3.7 Nude psig Diff. 3.7
(@) 1 (a) (a)
Wrist 37 | 24| 13| 64.8 | 34! 34 { 0| 100 30 | 24| 6| 80.0
Adduction ] * ] L] .
Abductionb 40 48 -8 120 34 2. -8 J 123.5 35 ! 30 5 85.6
- e “
Dorsiflexion 62 56 6 90.3 63 57 7J 90. 4 75 | 68 ki 90.6
Palmar flexion 87 68 19 8 60 56 4 93.3 70 i 53 17 5.7
U ] . |
Elb |
ow 152 |122 | 30! 802 | 153|137 16  89.5 | 151 122 29 80. 8
Flexion ‘
Extension® B -- ol 51 -5 7] 11| -4 | 157.0
Shoulder ‘
Neuteal lateral o l-10] -10 4T3 -18
L
Neutral {front view)| 11 39 28 35,5 4 20 | 16 35
Abduction 158 83 5 52,5 167 | 125 l 42 74.8 146 [1 8 68 53.4
r t T
Flexion 163 92 61 56, 4 189 136l 53 71.9 145 63| 82 43. 4
Extension 66 65 1 98.4 83 47 36 56.6 59
Hip
Flexion 99 57 42 57.5 123 55 68 44,7 114 58 56 50.9
Knee
Neutral position -4 -2 2 50 -2 20 ] 22 | 3 3 0 100
— - SN VU U -4
Flexionc 130 93 L37 1.5 QS—J -- I - ] - 95 87| 8 91.5

3parcent of motion retained in the pressurized state (percent cf nude).

bThis measure will be repeated at a later data.

CThis measure is, as yet, incomplete.

(After Jones
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fable 16-23 (continued)

f.  Mobility Ranges at 5 Psia Pressurization and Other Performance Data

on the Apollo Hard Suit

These data represent the mobility ranges of each of the articulations provided by the Apollo

Chamber Suit. These limits are achieved at torque levels under 2 ft-lbs. in every case.

Shoulder Mobility
Adduction
Abduction
Lateral/Medial
Flexion
Extension
Rotation/Lateral
Medial

Waist Mobility
Flexion
Side-to-Side

Hip Mobility
Flexion
Extension
Abduction

Knee Mobility
Flexion

Ankle Mobility
Adduction/Abduction

Flexion/Extension

Elbow Mobility
Flexion

Wrist Mobility
Adduction/Abduction
Flexion/Extension
Rotary Motion

% of Nude Range
73
90
89
87
62
100
100

90
95

80
60

88

85
96

85

81
64
100

Maximum Range
35°
120°
108°
123°
380
359
120°

40°
+15°

90°
10°
20°

140°

+20°
+35°

120°

+30°
+60°
360°

LEAK RATE. 30+ 10 scc/min, unaffected by repeated donnings and doffings. OPERATING PRESSURE.
Design operating pressure is 5 psia; however normal operation is assured within the 3.5-7.0 psia range

accommodating an atmosphere, 100% oxygen...or mixed gases at the higher pressure.
GRAVITY. The center of gravity of the suit complements that of the human occupant assuring stability
throughout the entire mobility range. DON/DOFF CAPABILITY. Self donning and doffing can be

accomplished within 60 second periods.

(After Litton Industries{206))

CENTER OF
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Table 16-23 (continued)

g. Barehand Sums Compared with Soft-Suited Raw Scores
on the Purdue Pegboard Hand Dexterity Test

Right hand Left hand Both hands Sum a‘i{ scores Assembly
Score | Percent | Score | Percent | Score | Percent | Score Percent | Score | Percent
(a) (a) (a) (@) (a)
Barehanded 108 | 100 111 | 100 80 100 299 100 253 | 100
(Optimal performance)
Vented T I
I Suit C 68 62,96 66 59, 46 45,5 56, BB 179.5 60. 03 106 41.90
Suit B 76 70, 37 8 70.27 52 65.00 | 206 68,90 133 52, 57
Suit A 75 69. 44 5 67,57 55 58,75 | 205 68. 56 146 57.71
Pressurized S ) T
Suit C 33 30. 56 36 32,43 18 | 22.50 87 28,10 45 17.79
Suit B 49 45, 37 49 44, 14 32.5 40.63 130.5 43, 65 9 31,23
Suit A 57 52,78 48 43,24 33.5 41,88 138.5 48, 32 82 32,41 J

2percent of performance retained.

The differences were analyzed by the Kruskal-Wallis one way analysis variance. Analysis of the
four parts of the pegboard test indicated that th: difference was significant at 0.01 level in all
cases except in the left-hand and both-hands test sequences under the vented condition. The both-
hands test was significant at the 0.05 level, and the left-hand test was significant at the 0.10 level.

{After Jones “85);

range of mission-related movements, this portion of the test received a highe
weighting. In the final rating on general mobility, suit A placed first, suit C
second, and suit B third.

For the strobe and cine sequences, suit A showed a clear superiority ove
the other two suits for pressurized mobility, both with and without the TMG.
The arm and shoulder mobility was particularly good; and the subject could
hold his hands over his head, relaxing and allowing his arms to remain elevat
without having to fight a severe torque to keep them there. Hip flexion was al
particularly good, for the pressurized subject could raise his leg more than 1
to 20 inches without leaning back and swinging around sideways to carry out th
maneuver as was necessary in the other two suits. A factor of considerable
significance was the ease and smoothness of motion carried out with suit A
during pressurized mobility. The other two suits did not allow this ease of
motion. The mobility concepts manifested in suit A have the most developmer
impact. However, it would appear that an ankle joint would add much to walk
ing, and an improvement in wrist stability and mobility is certainly needed. 1
addition, a method of allowing torso-bending should be investigated. Another
factor to be considered is the improvement in pressurized shoulder mobility
brought about by the suit C TMG top. An increase of 54° in shoulder flexion-
extension and an increase of 62° in shoulder rotation were noted when data we
compared with the suit B TMG top. While there is a great deal of improveme
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‘0 be made in the area of pressurized mobility in the TMG, it is noted that this
concept has a great deal to offer, and it was recommended that further develop-
mental study be carried out to improve the concept. Data are also available

on the eye-heart angle in the pressurized state on contour couches (185).

Data are available on the reach capabilities of prototype soft suits along all

‘he complex planes (185).

Table 16-23 f gives the mobility restriction and other performance data
‘or the Rx-3 hard suit.

Sloves and Boots

The intravehicular glove should be a conformal flexible envelope designed
.0 promote hand dexterity, high tactile sensitivit‘?r, mobility, and free articu-
ation of the hand and wrist when pressurized (270). Adequate restraint should
>e available to maintain normal curvature at the palm area, to prevent baloon-
ng and the resultant loss of hand mobility. The restraint elements utilized
should be located such that the glove's lines of greatest articulation will closely
:orrespond to the natural bending lines of the palm and the fingers. Mobility
‘eatures and glove restraints should be compatible with dimensional changes in
‘he hand, such as foreshortening of the palm and lengthening of the back of the
1and for clenching; or changes in surface length due to differences in band radius,
s in bending the wrist. The design of the glove must be such that when pres-
surized or unpressurized, it will allow the crewman to realize the mobility
lescribed in Table 16-20 without fatigue, strain or discomfort. The size,
lexibility and materials of the glove should be such as to enable the wearer to
serform all tasks required for spacecraft operations (295 ), and provide for
‘he abrasion and scuffing which results from the use of the hand and fingers
~ithin the spacecraft. If possible, the intravehicular glove should incorporate
1 removable GFE fingertip lighting system for each glove. The fingertip
lighting system should consist of light sources to be installed on the back tip
of the index and second finger of each glove.

In the design of the pressure retaining extravehicular gloves provided for
ase with the PGA during all extravehicular operations, thermal and abrasion
protection are foremost problems. The gloves should allow the wearer free
irticulation of the hand for motions described in Table 16-20 and should not
restrict the crewman's dexterity or tactility in performing emergency and
maintenance tasks, in manipulating intravehicular and extravehicular task
squipment,and in performing the tasks proposed (181, 295, 372 ). Especially
important is facility in operation of PLSS controls during normal and emergency
operation. (See Table 16-21). The gloves and fasteners used for attaching
‘he PLSS to the PGA should be designed such that they can be fastened or un-
fastened with one hand.

Thermal limits for finger pain in glove design have been covered in Thermal
'No. 6).

Glove and boot design in the Gemini extravehicular program has been

recently reviewed (217 ). Hand dexterity data are available on the Apollo soft-
suit prototypes. The Purdue Pegboard Test was administered to the suited test
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subject in the vented and pressurized (3.7 psig) suit conditions. During two
sessions of testing, six trials per suit were given for each of the two suit
conditions. The test conductor turned the pegboard 180° for all trials so that
wrist and finger mobility, rather than arm-reach mobility, was the influential
factor. The subject was also given six trials of the test while he was bare-
handed, and these data were considered to represent optimal performance.

Table 16-23g shows a comparison between barehand (optimal = 100 per-
cent) performance and the performance retained with each suit under each
condition. The fourth column of this table is the combined score of the three
preceding test sequences in which only pins were used. This comparison shows
clear differences in the performances of the three suits.

Ratings placed suit A in first place, suit B in second, and suit C in third.
Suit C allowed considerably less wrist and finger dexterity than either of the
other suits. The reduction in dexterity from the barehand level, a reduction
applying to all the suits, had several causes. Fingertip lights were detrimenta
expecially in suit C. Also, the gloves of suit C were the thickest and most
cumbersome. On this suit, the wire fingernails in the thumb of the left glove
came loose and interfered with test performance, and the gloves cut the sub -
ject's knuckles. Since fingertip lights interfered with hand dexterity, it was
recommended that the placement of these lights be improved. The concept of
fingernails on the gloves appears worthy and should be developed further, but
definite improvernent is necessary because the fingernails on the gloves of
suit C became bent and actually interfered with dexterity. Another factor need-
ing further development is the thickness of the material encasing the fingers.
The thin material used in the gloves of suits A and B showed definite advan-
tages over the thick material in the fingers of suit C.

Placement of the palm-restraint device should be optimized in order to
allow the hand to bend below the knuckles. If the restraint device is too high
and near the fingers, the subject is unable to grasp and can only flex the upper
part of the fingers. Wrist stability should also be improved in all gloves,
expecially in the gloves of suits A and C.

All of the gloves produced pressure points at the base of the thumb and on
top of the hand. These pressure points brought about excessive tiring of the
hand and forearm, and induced cramping in the thumb and forearm. Conse-
quently, considerable developmental work is needed to improve the gloves,
because none of these gloves would meet the multiplicity of requirements in-
volved in long-term pressurized wear.

Optimum design of footwear for lunar and planetary operations is now
under study. (See Ref. 10-2111 for review of soil factors.)

Helmet and Visors

The optical aspects of helmet and visor design have been covered in
Light (No. 2). Anthropomorphic factors must also be considered. Data on
the Gemini helmet and visor systems are available ( 217, 231). The following
are recommendations made for the Apollo program (336 ). The crewman
should be able to see all PGA components which require visual aid for connectic
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and/or adjustment, particularly downward to a point on the front torso center-
line six (6) inches below the neck ring. With the crewman standing and nodding
in an erect PGA, he should be able to see the toes of his boots. The vertical
field of vision of a crewman in a pressurized PGA and secured to the CM couch
must not be reduced by fault of the helmet, upward or downward, when the
crewman is subjected to a sustained acceleration of +10GX, eyeballs in. Un-
restricted range of vision should be as follows:

Horizontal Plane: 120° left, 120° right
Vertical Plane: 105° down, 90° up

With the head moved forward, eye relief for the primary pressure retention
visor should be 2. 06 inches. This eye relief must apply over a vertical range
from 45° up to 10° down.

Table 16-24 covers the visual field capability of several prototype Apollo
suits (185 ). 1In positioning the subject and the helmet in relation to the optical
perimeter, the test helmet was rotated on the neck ring to aline the helmet
center mark with the neck ring center mark; the subject's head was then posi-
tioned inside the helmet to aline the longitudinal center line of the head with the
helmet and center marks of the neck ring. The complete system (head and hel-
met) was then positioned with the center of the subject's eye pupil normal to
both the 90° and the 0° positions on the optical perimeter; and the helmet neck
ring angle with the horizontal,positioned according to manufacturer's specifica-
tions. After completing this zeroing procedure, the helmet was secured in
this zero position. During the test, the subject was allowed complete freedom
of movement in the helmet, since the objective of the test was to ascertain the
visual-field capabilities of each helmet as opposed to the subject's visual-field
capabilities. Subsequent to the test, the subject was instructed to indicate the
point at which he could no longer see the target as it was moved on the peri-
meter arm of 29 inch radius from directly in front (0°) to directly behind (180°),
This procedure was followed for each angular increment of the perimeter arm,
with four readings taken at each increment. The target was a disc one cm in
diameter. Two additional measures were used to determine the downward and
upward "operational' visual capabilities of each suit. These me asures were
taken with the subject standing and zeroed under the perimeter. To determine
upward visual capabilities, the subject was instructed to follow the target on
the perimeter arm as it was moved directly over him (the subject was allowed
to bend his torso). To determine downward visual capabilities, the same test
configuration was used; that is, the subject was standing and zeroced under the
perimeter, but was allowed to bend his torso. The subject was instructed to
indicate the highest point on his suit that he could see. A line from this point
on the suit through the center of the eye pupil to the perimeter arm was then
constructed to determine the downward visual angle measured from the horizon-
tal. All of the above measures were taken under two conditions, pressurized
(3.7 psig) and vented. To control test-subject variability, the same test sub-
ject was used throughout the visual-field test.

The mean value of the four trials for each angular increment of the peri-
meter was computed and plotted as shown in Figures 16 -24 a and b. Table
16 -24c shows the restriction under the ""operational test and percent of specifica-
tions (see above and P 2-79 in Light No. 2). Upward visual-field restrictions
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Figure 16-24

Dynamic Visual Fields within Soft-Suit Helmets
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Figure 16-24 (continued)
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Figure 1624 (continued)

“Operational”’ Conditions
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CONFINEMENT, ISOLATION AND SENSORY DEPRIVATION

The confinement, social isolation and sensory deprivation factors are to
be considered in space operations (99, 109, 236, 313, 326). The semantic
problem may be dissected by the following classification (108):

Confinement Isolation
a) Physical a) Social
i) Restrictive i) Solitude
ii) Determinative A. Single
B. Group
ii) Rejection
A. Single
B. Group

b) Sensory-Perceptual

i) Sensory and perceptual reduction
ii) Sensory and perceptual distortion

Confinement may be physical, temporal, or both. Physical confinement
may be restrictive, in the form of physical restraint, or determinative in
that the subject is free to move within his confines. Temporal confinement
may be restrictive if the subject is forcibly limited in his activities for an
imposed time, or determinative if he has to accomplish some achievement
within an independently determined time. Social isolation involves isolation
of individuals or small groups. It may be found in the presence of full sensory
stimulation. Rarely, if ever, do confinement and isolation exist as single en-
tities. Sensory or perceptual isolation, which involves essentially disturbances
of perception, may arise from sensory reduction, or be associated with sensory
distortion. It also may arise when stimuli do not provide adequate pattern in-
formation. Sensation may be present without perception. These are usually
related to forced individual isolation.

It should be emphasized that there has been relatively little research in
this general area. Much of the written material comprises reviews of a few

basic experiments. The data in this section must be used with great caution.

Confinement

Confinement may be defined as a physical and temporal limitation on the
activities and translational motions of an individual or group, occasioned by
constraint, and sometimes associated with elements of perceptual and social
isolationé 11, 108, 230 ). The following section is taken directly from a recent
review (108),

Along with many other modulating factors the response of the individual
to confinement is primarily dependent upon the stress imposed by closeness of
confinement, the extent of restriction, and the duration ( 11, 350 ). The
initial response is one of general physiological activation, with an increased
heart rate, respiratory rate,- and blood pressure. Excretion of ketosteroids
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and catecholamines tends to increase, while evidence of increased autonomic
activation is given by a decrease in skin resistance, or increased skin con-
ductance. These findings suggest a non-specific response to stress. Within
about 3 to 7 days a new threshold is established and physiologic activity begins
to recede to preconfinement level or below, although the pattern can be re-
activated by emergencies. Continuation of the confinement, with reduced
mobility and limited exercise, gives rise to signs of physical deconditioning,
manifest particularly in the cardiovascular system, in musculoskeletal de -
conditioning, in fluid balance, and in hemopoietic system (45). These mimic
the response to weightlessness (108). (See also vero sravity environment in
Acceleration (No. 7)).

In a well-motivated, trained individual, if habitability is close to accept-
able, there may well be no overt psychological effects; and even a covert
response, as judged by interview, diaries, and measurement techniques, may
be negligible (108). The occurrence of aberrant subjective and behavioral
reactions, in particular, 1s to a considerable extent influenced by training,
motivation, and experience. When manifest, they may occur in the form of
overt or covert resentment, hostility, and frustration, directed in the case of
the single confinee, at the environment itself, or at the unseen jnvestigators
or remote controllers (11, 108, 137, 158, 325, 361). Among multiple con-
finees, it is apparent that maintenance of good interpersonal relations can be
considered of major significance. Among two-man crews in close proximity,
considerable irritation can develop from the repetition of seemingly innocuous
habits, inadequacies of personal hygiene, or divisions of labor, while three-
man groups may be even more unstable, since any two can unite against the
third. With multi-man groups the formation of ¢liques can become a real
possibility ~Personal space factors are important correlates of social emo-
tional states for humans as well as for other animals ( 51, 207). Territoriality
needs are known to be important to a very wide phylogenetic range of animal
forms, including man. In the confined group, territoriality preferences may
be difficult to satisfy (158). It has, nevertheless, been clearly and repeatedly
shown that with careful selection, common motivation and wise leadership,
crews can unite to minimize difficulty and ensure the success of a mission,
although covert hostilities may be revealed later (289). However, details of
this situation and training are still research questions.

Physical discomfort in terrestrial conditions can be severe. The discomfort,

however, is more a function of immobility than confinement, as has been dem-
onstrated in conditions where the same free volume per man is available, but
in the one case the subjects are restricted, and in the other they have space-
sharing mobility. Furthermore, since the discomfort is largely associated
with the development cf pressure points from the gravitational vector, it has
not been a major feature of actual space operation.

The occurrence of perceptual aberrations, in the form of illusions and
hallucinations, has been widely disseminated in the anecdotal and experimental
literature. It is apparent, however, that this phenomenon is primarily as-
sociated with isolation and not with confinement (308 ). 1In fact where two
individuals are simultaneously confined it is rarely recorded, and never with
three or more. The occurrence of perceptual aberrations is, in fact, a feature
of reduced or distortzd sensory input, and does not take place in the presence
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of good consensual validation. Numerous studies have been undertaken to
examine such capacities as constructive thinking capability, memory,
problem solving, performance skils, etc. under conditions of confinement
(108). It is characteristic of the findings that while impairment may occur
under conditions of isolation and reduced sensory input,there is little or no
interference with intellectual function and performance capacity in confine-
ment,per se, unless the demands of the tasks are inappropriate, or unless

the confinement is extreme, or is accompanied by very adverse environmental
conditions of heat, humidity, noise, etc.

Sixty studies of confinement under terrestrial and space conditions have
been compared in Table 16-25a and the relation of symptoms to the volume and
duration, plotted in Figure 16-25b. Classification is on a three point scale
according to the amount of impairment observed, namely: no impairment
(grade 1), detectable impairment (grade 2), and marked impairment (grade 3).
Marked impairment was considered to be manifest psychophysiological change
which migh prejudice the safety or successful outcome of a mission. Detectable
impairment was considered to be present in a situation which was tolerable,
but was accompanied by measurable evidence of disturbance which could reduce
proficiency. The classification of no impairment included those situations where
some disturbance of homeostasis or comfort might have existed without loss of
proficiency. It is considered that a classification scheme of this nature even
though it makes use of widely different criteria for volumes and responses
and is of a subjective nature, provides distinctions sufficiently obvious as to
permit unobjectionable grading (108 ).

Three impairment zones can be defined in terms of duration and volume
as indicated by the broad demarcation lines. The upper line defines a thres-
hold of minimum volume per man which will be acceptable in most circumstances,
even when modifying factors are not optimum. The lower line defines a thres-
hold which will be unacceptable in most circumstances even if modifying factors
are optimum. Between lies a zone where acceptability depends to some degree
on optimum habitability, and personal factors. Extrapolation of the two lines
suggests a junction at about 60 days at a volume which may represent the mini-
Mmum acceptable for prolonged durations. The further direction of the curves
is not known at this time, but it is interesting to note that Soviet work suggests
that there is a resurgence of stress phenomena at about 60 days, in which
case the threshold curve may again rise (108, 202 ). It is considered that the
impairment which was demonstrated in the ""Hope'" studies resulted from the
rigors of demanding work schedules, and not from confinement per se ( 5, 6 ).
The marked impairment in the 152 days of confinement in the University of
Maryland study is believed to be due to the nature of the programmed environ-
ment, publicity etc., and not to the confinement which, in fact, was minimal
( 97 ). The third and most significant exception is found in the Gemini series
of flights. Since these were successful, the impairment cannot be classified
as a grade three. Nevertheless, despite enthusiastic reports, considerable
impairment did exist, particularly in the Gemini VII mission, as manifested
by post-flight testing. In fact, it is probable that only the dedicated motiva -
tion and discipline of the crews, along with the added benefits of space shar-
ing, made the missions as successful as they were.

Key factors altering the curve are motivation, discipline, and experience.
The habitability of the confined chamber both with respect to environmental
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Table 16-25
Confinement Studies on Humans

a. Extent of impairment Resulting from Confinement (See text for details)

Type of Study | Operational Conditions Votume Duration impairment I Reterences
per man {days) Psych Pliysio l
(cu. ft.)
Simulator SAM one-man 47 7 3 2 AF-SAM.69-101, 1959
Single SAM one-man 47 1% 2 1 AF-SAM-60-80, 1060
Vostok one-man a0 21 1 1 FTD-TT-62-1619, 1962
Simulator Lockheed-Georgia
Muiti OPN-360 183-250 15 2 Z WADD-TR-60-248, 1960
HOPE (i 187 15 2 2 WADD-AMRL-TDR-63-87, 1963
HOPE Il 110 30 2 ¢ WADD-AMRL-TDR-63-87, 1963
HOPE IV & V 110 12 2 2 WADD-AMRL-TDR-64-63, 1964
HOPE VI & VII 187 12 2 2 WADD-AMRL TDR-64-63, 1964
Nawy ACEL 75 7 2 2 NAMC-ACEL-383, 1958
Navy ACEL 75 8 2 2 NAMC-ACEL-413, 1959
N. A. A. conical 67 7 2 ? IAS Meeting, Los Angeles, 1962
N. A. A. cylindrical 375 7 1 1 AIAA and ASMA Conf., L. A, 1963
N. A. A. disc 800 4 1 i AIAA and ASMA Conf, L. A, 1963
SAM two4man 106 14 2 2 Aerospace Med., 30:722, 1959
SAM two-man 106 17 2 2 Aerospace Med., 32:603, 1961
SAM two-man 106 30 2 2 SAM-TDR-63-27, 1963
Republic 211 14 1 1 RAC-393-1, 1962
Douglas 250 30 1 1 ASME Conf., Los Angeles, 1965
GE 215 30 1 1 GE Doc. 64SD-679, 1964
Martin Baltimore 133 3 1 1 MAR-ER-12693, 1962
Martin Baltimore 133 7 1 1 IAS-63-18, 1963
NASA Ames 61.5 7 ? 2 NASA-TN-D-2065, 1964
WADC long range 140 5 2 2 Aerospace Med., 30:699, 1959
Confined U. of Maryland (Single) 1368 162 3 3 Univ. of Maryland, 1963
Chamber U. of Georgia (Multi) 65 3 2 2 GEQU 226-FR, 1963
U. of Georgia " 52 3 3 2 GEQU 226-FR, 1963
U. of Georgia N 52 4 3 ? GEOQU 226-FR, 1963
U. of Georgia ” 52 14 3 2 GEOU 226-FR, 1963
U. of Georgia . 39 7 3 ¥ GEQU 226-FR, 1963
USNRDL " 17 14 2 2 USNRDL-TR-418, 1960
USNRDL v 117 5 2 ? USNRDL-TR-502, 1361
Lockheed-Georgia (Muiti} 125 4 1 1 WADD-TR-60-248, 1960
“Coffin” (Single) 28 7 3 3 Science, 140:306, 1963
Cockpit F84 <30 2 1/3 2 2 WADD-TR-55-395, 1965
WADD capsule 275 2 2 1 WADD-ASD-TR-61-577, 1961
Vehicle APC M59 30 1/6 1 1 AHEL-TM-3-60, 1960
APC M113 233 1/3 2 2 AHEL-TM-17-60, 1960
APC M113 28 1/2 2 ? AHEL-TM-1-81, 1961
APC M113 255 1 3 ? AHEL-TM-23-61, 1961
APC M113 255 1 3 3 AHEL-TM-7-682, 1962
Submarine Nautilus 1600 11 1 1 USN Med. Res. Lab. Rept. 281, 1957
Seawolf 570 1 1 USN Med. Res. Lab Rept. 358, 1961
Nautilus 570 4 1 1 USAF Med. J., 10:451, 1959
Triton 570 83 1 i “Unusual Environments and
"Human Behavior” 1963
Chair SAM <2 4 1 3 Aerospace Med., 36 646, 1964
Bed Lankenau <25 45 1 3 WADD-AMRL-TDR-63-37, 1963
SAM <25 28 1 3 Aerospace Med., 12:1194, 1964
SAM <25 14 1 3 Aerospace Med., 15‘:931, 1964
Spacecraft MA-6 47 /3 1 1 NASA Doc 398, 1962
MA-7, 8 47 1/2 i 2 NASA SP-6, 1962
MA-9 47 1172 1 2 NASA SP-45, 1963
Vostok | 90 1/2 1 1 FTD-TT-62-1619, 1962
Vostok 11 90 >1 1 2 FTD-TT-62-1619, 1962
Gemini 11 40 1/5 1 1
Gemini 1V 40 4 1 2 Gemini Mid-Program Conf.
Gemini V 40 8 1 2 Proceedings, Part 1 & 2
Gemini Vi 40 1 1 1 MSC, Houston, Texas, 1966
Gemini Vil 40 14 1 2
I

{After Fraser“m))
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Table 16-25 (continued)

b. Free Volume-Duration Tolerance Factors in Confinement

TOLERANCE OF CONFINEMENT AND ® 1600cu ft 1368cu fI

ACCEPTABLE SPACE CABIN REQUIREMENTS 152 days
600 ® ® ®
500 O No Impairment
40 /\ Detectable Impairment ®
[J Marked Impairment

300
I Simulator  (one -man) " B
2 Simulator  (multi) ASTOdp'e %
200 3 Confined chomber : udies
4 Cockpit No Impairment A
150! 5 Vehicle
6 Submorine
7 Chair
S IO 8 Bed
E 9 Spacecroft
b 10 Programmed environment
3 |
@
£ @ ® ®A
£ 40 ® el
30 ® . A
A
20

Ic)I 2 3 4 5678910 2 3 4 5 10

Duration - Days
a.  Summary of experimental data.

(After Fraser“os)

¢. Threshold Volume Requirements According to Duration of Mission

Duration Threshold of acceptable Threshold of unacceptable
{days) volume - Cubic Feet volume - Cubic Feet
1 50 25
2 75 25
3 90 25
4 105 30
5 115 35
6 120 35
7 125 40
10 135 50
20 140 70
30 150 85
>60 ?150 ?150

(After Fraser“og))
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factors such as atmospheric pressure and composition, heat, humidity, and
noise, and with respect to hygiene, dietetic, recreational, and work facilities,
is another factor. The nature of the actual activities and tasks demanded is
also a significant factor, particularly the meaningfulness, and the degree of
complexity. The requirement for realism and/or relevance in simulated tasks
is also significant, in order to prevent disinterest. Knowledge of the expected
duration of confinement is still another factor which affects tolerance not only
subjectively, but objectively, in that a characteristic rise in morale and activity
can be shown to occur at the midpoint of a known period, and again a day or so
before the end. A most significant factor concerns physical fitness and exercise
There is no doubt that in terrestrial confinement, adequate exercise and mobilit
not only prevent deconditioning, but improve morale, and may even be associate
with improved task performance. How much is adequate, however, is not clear
and furthermore it must be remembered that weightlessness and immobility
may well be syne rgistic in their causative relation to physical deconditioning.

A final modifying factor relates to the number of confinees. As already noted,
an increase in the number of confinees reduces some and creates other prob-
lems. At the same time it allows the possibilities of space-sharing, which
effectively increases the available free-volume per men.

Disregarding cultural and other variables which may alter these thres-
holds Figure 16-25b indicates that for durations of 7 to 30 days, for small
group crews, about 125-150 cubic feet per man of free space would be the
minimum acceptable volume (134 - 138). Acceptability could be still further
improved by promoting optimum habitability and working conditions (see
below). Marked impairment would be expected with a free volume per man
of less than 40 cubic feet for 7 days, or less than 85 cubic feet per man for
30 days.

For missions of months and years duration the critical volume factor is
not as clear (109 ). (See Figure 16-26). An additive model of crew space
for long duration missions includes the following ! 36 ):

Volume = (Seated volume per man + work volume per man t
ingress volume per man ) x (Number of men)
+ Transfer volume per station
Intercompartmental transfer volume
Rest volume per crew off duty
Sustenance volume per crew
Logistics work space OF equipment station

Equipment and storage volume for sustenance

+ + + + + +

Volume for waste

From anthropometric and other data, adequacy was defined as a minimum
volume of 50 cubic feet per man (multiman) for 2 days, 260 cubic feet per man
for one or two months, and 600 cubic feet per man for many months in Figure
16-26, Reference ( 36 ). Another approach using these criteria with an
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RECOMMENDATIONS FOR LIVING SPACE IN PROLONGED SPACE MISSIONS
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Recommendations for Living Space in Prolonged Space Missions

(See text)
(After Fraser“og))

adjustment for the debatable fact that an increased volume per man becomes
necessary with increase in the number of crew, is also presented for 5 and
10 man crews in Figure 16-26, Reference (74 ).

Others have argued and shown in simulator studies that the occupants of
a cabin allowing a large area, and other habitable features, would show little
if any physiological differences from those in a normal life situation with a
relatively sedentary occupation, such as that of an office worker ( 54 ). This
study resulted in the curve of tolerability, the curves of acceptable perform-
ance, and the curve of optimal habitability shown in Figure 16-26. While the
tolerance curve falls in line with other suggestions ( 74, 109 ), and may well
represent minimal acceptability, there is some doubt as to whether the other
‘WO curves actually demarcate volumes for adequate and optimal habitability
~ith the degree of accuracy implied. At the same time, the fact that free
volumes found in certain operational situations, such as Army barrack al-
lowances, Federal Prison allowances, and nuclear submarine allotments, lie
vithin that range, suggests that the curves (54 ) are reasonable approxima -
ions. The data for Army barracks, prison, and nuclear submarines (11 )
tre shown at the 200 day level for convenience. The arrows alongside indicate
hat the volumes designated may be occupied for longer periods.

Some other recommended volumes are also found to lie in the range sug-
jested by Figure 16-26 ( 3, 235 ). On the basis of requirements for Arctic
:xpeditions, a free volume of as much as 2000 cubic feet per man has been
iuggested for multiman operations (57 ). A volume of this size appears
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unnecessarily large and luxurious for space vehicle conditions.

Although the volume requirements per man cannot be specified with any
degree of authority, t would seem that for durations of 300-400 days, or per-
haps beyond, the absolute minimal acceptable volume for multiman operations
would be in the region of 200-250 cubic feet per man; the acceptable would be
about 350-400 cubic feet; and the optimal,about 600-700 cubic feet, utilizing
the volume for all purposes related to living conditions. To maximize habit-
ability for long-duration missions, it has been suggested that design require -
ments should be based on the optimal level of 600-700 cubic feet per man (109 )

The mode of utilization and configuration of available space can be examine
from different points of view, but several ground rules can be assumed. Thus,
space must be provided for conduct of tasks relating to the mission, to vehicle
management, and psychophysiological support. Space is also required for rest
and off-duty time, for dining and food management, and for hygienic provisions
Under some circumstances, minimum hygienic facilities can be tolerated for
long periods of time (296 ). Therefore, it is convenient to think of configuratio
in terms of functional units relating to these activities, although it should be
realized that functional units are not necessarily topographical units. In other
words, the volume allocated to one unit need not necessarily be located in one
region of a vehicle. Except by invoking tradition, custom, and usage, it is
difficult to justify logically the need for separating available volume into dis-
tinct regions, nor is it easy to determine how many such regions there should
be. There is no doubt that highly motivated individuals, such as astronauts,
can work, eat, rest, and sleep for days without leaving their seats, and still
maintain acceptable performance. At the same time, various studies of
habitable conditions { 92, 109, 144, 368 ) have emphasized the need for vari-
ety, change, relief of monotony, and perhaps most of all, the desire to protect
some modicum of voluntary privacy and storage of personal possessions.

It has been suggested that four functional units might therefore be delineate
namely:

Work unit: for the conduct of operational tasks, vehicle
management, and psychophysiological support.

Public unit: for use in dining, food management, communal
recreation, leisure, and exercise.

Personal unit: for sleeping, personal privacy, and personal
storage.

Service unit: for toilet purposes, laundry, and public storage.
Several studies of the partition of this space for long duration mission have

suggested the relative volumes of available space which might be occupied by
each functional unit as follows ( 3, 74, 109 ).

Work unit: 40%,
Public unit: 25%
Personal unit: 20%
Service unit: 15%
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‘t 1s emphasized that these suggested proportions are approximate and tenta -
‘ive and represent merely a relative breakdown of available volume under
~hat might be considered optimal conditions. In each case the actual pro-
>ortions would be influenced by the requirements of the mission and the
zapacities of the vehicle and dwelling, and would need to be determined em-
dirically by analysis of the requirements and the use of models and mock -ups,

Social Isolation (158 )

Social isolation represents a separate source of potential difficulty in
ronfined environments ( 6, 7, 8, 11, 34, 44, 49, 109, 135, 137, 155, 156
57, 159, 160, 168, 240, 357, 360, 368 ).
confinement, however, is not a necessary component of social isolation (134,
305). Man is a social animal, highly dependent on other men in a variety
f ways. The human personality typically includes a variety of social needs
such as dominance and affiliation that can only be satisfied in interaction with
ther people. In a small isolated group, these needs are more likely to be
rustrated than in a normal social situation where a wider variety of other
'eople can be found (134, 135, 138, 158, 159, 361, ). The small, isolated
.roup also provides its members with fewer opportunities to make social
omparisons, a process thought to be important in the development and main-
enance of stable, accurate self evaluations. Men use social comparisons
or testing the validity of their own erformance, and the appropriateness of
heir own emotional reactions (15, 1%2 ). Both social need satisfactions
nd opportunities for social reality testing can be severely impaired in a
mall, isolated group. This can result in a heightened sense of frustration,
ecreased accuracy and stability of self concepts, and development inap-
ropriate, invalid group norms that may be at variance with or irrelevant to
he group's initial primary mission.

Another aspect of being confined with a relatively few other people is the
egree to which it accelerates the social acquaintance or social penetration
rocess. Anecdotal reports suggest that certain people in such situations use

ach other as significant sources of stimuli to a greater degree than is normal

r markedly different value systems (158 ). The theory of social balance holds
1at tensions are created between individuals when they have different attitudes
r oral opinions about a third person, object, or set of objects. The more
entral these attitudes and opinions are to the pe rsonalities involved, the

reater amount of tension social imbalance will create. In the normal course

f social existence, men avoid intimate contact with others whose value systems

re markedly different. In the confined group, such avoidance may be im -
ossible,

The accumulation and escalation of interpersonal tensions generated by
tck of social need-satisfactions and social imbalance makes interpersonal con-
ict in confined groups a more difficult problem to manage than it normally
ould be. Lack of privacy, inability to establish and maintain territorial
wnership, inability to find convenient scapegoats outside the group for dis-
laced aggression, and restricted opportunities for releasing tension through

16-77



muscular activity all may contribute to evermounting interpersonal hostility.
Pairs of men hypothetically incompatible with regard to people showed a high
degree of territoriality behavior, whereas incompatibility with regard to non-
people-oriented considerations, such as dogmatism and need achievement, did
not particularly produce territoriality (318). Inc ompatibility with regard to
egocentric frames of reference, such as dominance needs and dogmatism, pro-
duced a high rate of "together activity''~--largely argumentive in nature --while
incompatibility on sociocentric frames of refercnce such as needs for affiliatior
and achievement generated a tendency towards social withdrawal--more alone
than together activity.

Even though reporting higher levels of subjective stress, isolated pairs of
subjects tend to perform better on group task than do unconfined controls (158 )
This appears to be due to the %erformance enhancement value of moderate
levels of stress in isolation ( ). A high rate of test mission aborts, can
be generated by simply reducing the variety of tasks required of subjects
and increasing their expectations regarding duration of confinement from un-
specified to time-limited exposures ( 158). The stresses of stimulus reductior
isolation, and confinement can be considerably relieved by stimulus enrich-
ment procedures, increased communication with the outside world, and careful
attention to group composition considerations ( 158, 159). It is clear from
anecdotal literature that small groups of men can survive four months of social
.isolation and confinement. Longer periods of time are considerably more
doubtful. More thought and research needs to be given to these aspects of man
in a closed system for prolonged periods of time (182, 304). Model building
and computer simulation of the problems is continuing (119, 273). Selection
of group members and leadership criteria are also under study (134, 135, 138,
139, 215, 255, 264, 284, 285, 286, 287, 288, 289, 322).

Sensory and Perceptual Deprivation

Exposure to this condition may be expected in space operations most
often when other members of a crew are dead or lost and the lone survivor 1s
cut off from communication with ecarth. However, monotonous confinement of
groups can result in problems in this sphere. Stimulus reduction or compar-
ative monotony is not necessarily associated with confinement (301). It is now
generally recognized that man needs a minimum level of stimulus variety be-
low which somewhat bizarre, maladaptive behavior and subjective experiences
are reported (13, 44, 67, 110, 158, 167, 191, 196, 203, 210, 228, 250, 308,
31, 348, 349, 375, 377, 378, 380). These may include a tendency to with-
draw into ones self, intense fears of losing ones rationality, hallucinatory
behavior, decrements in certain perceptual and cognitive functions, increased
need for stimulus inputs of almost any nature, and changes in sensory acuity,
generally in the direction of heightened tactile and auditory sensitivity. Dark-
ness or monotonous, diffuse light patterns of low intensity predispose to the
hallicinating behavior (110) Marked reduction in frequency of EEG alpha-
rhythms have been seen as possibly indicative of a central nervous system
change (312, 348, 349, 376, 379). Significantly, the EEG does not return to
normal for several days following a two week period of sensory deprivation.
These results have been reported from studies of sensory and/or perceptual
deprivation, but such data as are available suggest that similar phenomena
perhaps to a less intense degree occur in group confinement situations involv-
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ng a relatively monotonous existence even though not stimulus-deprived in the
‘raditional sense (158, 174, 301). Internal time consciousness is altered by
such conditions (101, 220, 314), but exposure of more than 3 hours is probably
required (283).

A great deal of attention should be given to developing a habitable living
trrangement, in particular with private areas affording relief from constant
nteraction with other crew members (108,109) (see also page 16-76). Provisions
should be made for both active and passive types of recreation ( 109). It is also
mportant that optimum amounts of communication with Earth be provided, to
ninimize the sense of isolation, but avoid excessive communication. One
nust avoid aggravating conflicts which often arise from interaction between
solated group and "external controllers'' (325).

The possibility of giving the men experience in the situation of confinement,
tocial isolation and sensory deprivation for training purposes should be manda-
ory (255). If handled properly, this would give the men a chance to experience
‘ome of the frustrations inherent in these situations, some of the behaviors
hat may appear in themselves and others, and to practice ways of handling
hem. Such experiences, perhaps repeated several times, with an opportunity
or discussions intervening, could provide the means for effectively handling
uch occurrences as they arise during the mission itself. Giving the astronauts
uch experiences is in accordance with the current philosophy of their training
)rogram, in that emphasis has been placed upon their experiencing, in as
reat a degree of realism as possible, all anticipated situations of space flight
rior to their undertaking the mission itself. Experience with detailed simula -
ion of a lunar mission is available (124, 125, 126, 127 }. These may be
ised as models of operational study of crew interaction and efficiency. How -
'ver, a problem arises regarding how much simulation would be required for
onger missions of many months (109)., A compromise that seems attractive would
¢ to prepare a series of films showing groups of men in laboratory situations
f confinement, demonstrating examples of boredom, aggression and conflict,
'oth overt and covert, and the methods, good and bad, used by the personnel
o deal with these events (100). This could then constitute a basis for round-
able discussions by the astronauts, along the lines of evaluating how likely
t would be that such situations would arise in space flight, how effectively the
ituations were dealt with by the personnel in the films, and what methods
aight be more effective in space flight.

A general review of problem areas in the handling of confinement, social
solation and sensory deprivation is available (369 ). A review of Soviet studies
a this area has been published (196 ).

WORK-REST-SLEEP CYCLES (WRS)

Man is influenced by the diurnal periodicity of the physical world sur-
ounding him. His typical work-rest- sleep cycle (WRS) is thus based on a
4-hour rhythm (16, 17, 20, 260, 307, 326). His physiological function and,
s a result, his psychological performance vary according to this rhythm. As
result, any alteration in the WRS to which the man is adapted will cause
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variations in physiological functions and psychological performance ( 6 ).

Diurnal or Circadian Rhythms

Figure 16-27 is an example of some of the diurnal or circadian rhythms.
At lease 50 are known ( 19 ). The variations in function are the result of
discrepancies in phase relationships between man's endogenous metabolic
clock,according to which many physiologic functions are moderated with re-
gular periodicity, and the external environment ( 65, 141, 260, 278, 280,
298, 307, 326. 353, 354, 355, 356). The biological functions, the most
easily measured of which are pulse rate and body temperature, become ''en-
trained to'' or synchronized with this schedule. These functions follow a rather
consistent course with a daily high point sometime during the early evening
hours (between 1600 and 2000) and a low during the early morning hours
(between 0400 and 1000). This cycling occurs whether the man is awake or
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asleep. A further relevant point is that this curve is maintained for a period
of four to six days after a marked change in the day /night relationship (153
154 ). It is also relevant that this curve is generally maintained by individuals
working night shifts. This presumably results from social factors governing
the man's off-duty activities. When the endogenous metabolic clock is out of
phase with the external environment (e. g., when one remains awake from
2200 to 0800, a time when one is usually accustomed to sleeping), human
performance decreases and a man is said to be in a state of asynchrony (153
154, 314 ). In this state, hunger and somnolence or insomnia will be present
at the "wrong'' times. This can be demonstrated by taking various physio-
logical measurements during asynchrony (body termmperature (193 ), endocrine
and salt excretion patterns in urine ( 24, 117, 141 ), heart rate ( 193),

EEG (103 ), and gastrointestinal motility (193 )) and comparing them with
those obtained on the same individual when in synchrony with his external
environment. There is a suggestion that physical immobilization reduces the
intensity of the usual physiological cycles { 251).
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Studies of phase shift in free-running cycles without time cues are now under
way (16, 37, 280 ). These are of vital importance to WRS programming.
When men are kept isolated in a constant light, temperature, and sound en-
vironment where no time cues are available, their endogenous rhythms begin
to override the previously entrained functions. There is a continuous delay in
the time of getting up as well as in the time of urine calcium and potassium ex-
cretion and body temperature rise. The average period for all functions is
25.1 hours. The urine volume, calcium and potassium have a 26.1 hour cycle.
Little is known of the mechanisms of these internal,oscillating control systems
(16 ). Cyclic change in light intensity entrains the rhythm more than does
temperature cycle ( 19 ). Alteration of the key cuing mechanism or "Zeitgeber"
can desynchronize the different physiological cycles from one another. Person-
alities and activity habits of isolated individuals interact to modulate physio-
logical and performance responses to environments free of time cues (280 ).
Theoretical studies suggest that organisms with a natural period which is
relatively short as compared to the time-cue cycle become entrained with a
leading phase, the amount of phase angle difference depending on the ratio of
the two natural frequencies ( 18, 19, 353 ). The longer the natural period,
the more it lags in phase behind the time cue during entrainment. It is pos-
sible to train animals and man to an artificial time cue which is a multiple of
1:3 to the natural cue. This suggests that scheduling of the WRS cycle should
be so devised as to have the time cue cycle a submultiple of 24 hours. Evi-
dence that this is so will be discussed below (2, .

The problem created by scheduling WRS cycles for long aerospace mission
is complicated by the cumulative effects of prolonged alteration in W, R, and
S on performance ( 79, 267). It is compounded by the possibility that an
émergency may require continuous performance of alertness at high levels for
unknown lengths of time. Most of the present knowledge about work-rest-sleep
cycles comes from ground-based studies obtained over periods of less than
24 hours. Small numbers of subjects, variability of motivation, and diversified
backgrounds make generalization from the literature difficult. Both temporal
and non-temporal factors affect work, rest, and sleep. The temporal com-
ponents are summarized in Figure 16-28,

Major emphasis in the literature has been placed on the durations of the
work (dw) and sleep (ds) periods, moderate emphasis on the total "daily"
periodicity (DT), and very little on the ratios of work to rest (dw/dr) and
sleep to wakefulness (ds/daw).

Sleep Duration

Satisfactory psychological pertormance is dependent upon an adequate
sleep-wakefulness cycle, but few studies have been done to determine the opti-
mum number of hours of sleep required per hours of waking time, i. e., ds/
daw. The usual study has investigated the ratios, ds/DT, (DT = 24 hours) to
determine the amount of sleep spontaneously taken per day without regard to
performance. It has not been demonstrated at this point whether man needs
6-8 hours of sleep in every 24 or if, up to a limit, man can take any number
of hours of waketulness as long as they are offset by hours spent sleeping in
the ratio ds/daw = 1/2-3. On the short side, the quality of afterncon perform-
ance improves almost linearly as sleep duration is increased from one to six
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Man's Daily Activities Categorized to Form a Sleep-Wakefulness Cycle and
a Work-Rest Cycle. (The two cycles are not habitually in phase with each other.)

(After Deutsch(79), adapted from KIeitman“gB))

hours (338). Beyond a duration of six hours of sleep, improvement is less
marked and is completely absent when sleep is lengthened from 8 to 10 hours
in every 24.

One could infer that the ds/daw ratio for optimum performance is 1/2-3.
This is consistent with the results of Table 16-30 in which a ration ds/daw
= 1/3 was found adequate (1).

It is known that some finite amount of sleep is required to preserve the
physiological balance between waste and repair. The exact amount needed can
be expected to vary with the individual's metabolic state and the type of work
being done. Relatively large variations in needs have been demonstrated in
the literature ( 142, 193, 195, 249, 327, 370 }. Statistical evaluation of
ds (DT = 24 hours),as observed in large numbers of normal volunteers,points
to a mean value of 7.5-8 hours required per 24 ( 66, 193, 194 ). S's in one
study stated they 'felt better” after an 8-hour sleep period than after 6 (327 )
Performance measures did not bear out this difference in 'feeling, ' however,
as the S's with 6 hours sleep performed equally as well as those with 8. Al-
though there may be no physiological need for the extra two hours sleep as
far as performance is concerned, it still has a beneficial effect upon the
subjective feelings of the subjects and is, therefore, probably desirable.

Under normal conditions, a man goes to bed when he is tired and ready for
sleep, and, generally, he has difficulty falling asleep at other times, presum-
ably because of the influence of the ""activation period' of his previously en-
trained cycle. This problem comes into focus when there has been a drastic
alteration in the sleep/wakefulness schedule in relation to the activation curve.
The individual has difficulty getting to sleep even when he has been awake for
well beyond his normal span of wakefulness. Even though the activation curve
may continue its normal course, there is an apparent psychological adaptation
after about four days on a new schedule. This underscores the desirability of
preadaptation to a given schedule if that schedule 1s to differ significantly
from the normal regime of 16 hours of wakefulness and 8 hours of rest (62).

Weightlessness will undoubtedly have some cffect on the ds required.
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Speculation has it that less sleep will probably be required since the decreased
metabolic energy needed to function in a weightless field may decrease the need
for sleep, thus creating additional waking hours ( 314 ). Experimental attempts,
however, to simulate weightlessness using water immersion techniques have

led to conflicting results. A ratio of ds/DT = 2/24 was found to be the maximum
required during one seven-day study ( 122 ). Other subjects immersed 10 hours
out of 24 noted no alteration in their pre-test ds/DT ratio of 8/24 (123 3.

The following have been the experiences in orbital flight ( 27 ).  Astro-
naut Gordon Cooper--22orbits, 34 hr. ;s 20 min., 1963--found that even early
in flight, when he had no tasks to perform and the spacecraft was oriented so
that the earth was not in veiw from the window, he easily dozed off for brief
naps. During the period designated for sleep he slept only in a series of naps
lasting no more than one hour each. His total sleep time was about four and
one-half hours. He stated that if there had been another person along to monitor
the systems he could have slept for much longer periods. He further stated
that he slept perhaps a little more soundly than on earth ( 53 ). The long
period of alertness, of course, enabled Cooper to utilize his orbital time to the
optimum for his operational and exploratory tasks.

In 1965 two more orbital flights by American astronauts were made, in
which special attention was given to the sleep and wakefulness cycle (29). Diffi-
culty in sleep programming was elucidated by the problems in this flight. The
GT-4 and 5 crews (4 and 8-day missions) reported no difficulty in performance
related to the 45 minute darkness and daylight cycle created by orbital flight.
There were some definite sleep problems. A great deal of difficulty was
encountered in obtaining satisfactory sleep periods on the 4-day mission.

Even though the flight plan was modified during the mission in order to allow
extra time for sleep, it was apparent, post-flight, that no long sleep period

was obtained by either crewman. The longest consecutive sleep period

appeared to be 4 hours, and the command pilot estimated that he did not get
more than 7-1/2 to 8 hours good sleep in the entire 4 days. Factors contributing
to this lack of sleep included: (1) the firing of the thrusters by the pilot who

was awake; (2) the communications contacts, because the communications could
not be completely turned off; and (3) the requirements of housekeeping and
observing, which made it difficult to settle down to sleep. Also the responsi-
bility felt by the crew tended to interfere with adequate sleep.

An attempt was made to remove a few of these variables on the 8-day
mission and to program the sleep periods in conjunction with normal night-
time at Cape Kennedy. This required the command pilot to sleep from 6 p. m.
until midnight, Eastern-Standard Time, and the pilot to sleep from midnight
until 6 a. m., each getting a 2-hour nap during the day. This program did not
work out well due to flight plan activities and the fact that the crew tended to
retain the midnight to 6 a. m. - Cape Kennedy nighttime period. The 8-day
crew also commented that the spacecraft was so quiet that any communication

or noise, such as removing items attached with Velcro, aroused them.
On the 14-day flight, the flight plan was designed to allow the crew to

sleep during hours which generally corresponded to nighttime at Cape Kennedy.
There was a 10-hour period established for this sleep, and it worked out very
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well with their normal schedule (Figure 16-29). In addition, both crewmen
slept at the same time, thus eliminating unnecessary noise from the actions

of the other crew member. The beginning of the scheduled rest and sleep
period was altered to move it one-half hour earlier each night during the mis -
sion in order to allow the crew to be up and active throughout the series of
passes across the southern United States. Neither crewman slept as soundly
in orbit as he did on earth, and this inflight observation was confirmed in the
post-flight debriefing. The pilot seemed to fall aslecep more easily and could
sleep more restfully than the command pilot. The command pilot felt that it
was unnatural to sleep in a seated position, and he continued to awaken spon-
taneously during his sleep period and would monitor the cabin displays. He
did become increasingly fatigued over a period of several days, then would
sleep soundly and start his cycle of light, intermittent sleep to the point of
fatigue all over again. This response may represent inability to sleep in a
seat or natural reaction to responsibility. The cabin was kept quite comfortable
during the sleep periods by the use of the Polaroid screen and some foil from
the food packs on the windows. The noise of the pneumatic pressure cuff for
Experiment M-1 did interfere with sleep on both the 8- and 14-day missions.
The crew of the 4-day flight was markedly fatigued following the mission. The
8 -day crew were less so, and the 14-day crew the least fatigued of all. The
l14-day crew did feel there was some irritability and loss of patience during
the last 2 days of the mission, but they continued to be alert and sharp in their
responses, and no evidence of performance decrement was noted. (See electro-
encephalographic data below. )
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Soviet experience with sleep in orbit is of interest. The sleep of Soviet
cosmonaut, Gherman Titov - 17 orbits, 25 hr., 18 min., 1961 --was not
without interruptions (323 ). After seven orbits he felt a definite state of
fatigue. When he flew over Moscow at 6:15 p. m., he prepared for sleep,
according to schedule, by releasing special belts from the side of the pilot's
seat. He strapped his body to the contour seat, and after adjusting the seat
to the bed position, he promptly fell asleep, but awakened much earlier than
scheduled. This happened during the eighth orbit. When he opened his eyes
he saw his arms dangling weightlessly, and his hands floating in mid-air.
"The sight was incredible, ' Titov reports. 'l pulled my arms down and
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folded them across my chest. Everything was fine--until I relaxed. My arms
floated away from me again as quickly as the conscious pressure of my mus -
cles relaxed and I passed into sleep. Two or three attempts at sleep in this
manner proved fruitless. Finally I tucked my arms beneath a belt. In seconds
I was again sound asleep.' Titov further states: ""Once you have your arms

and legs arranged properly, space sleep is fine. There is no need to turn over
from time to time as a man normally does in his own bed. Because of the
condition of weightlessness there is no pressure on the body; nothing goes

numb. It is marvelous; the body is astoundingly light and buioyant.. .1 slept

like a baby.'" He awoke at 2:37 a. m., Moscow time, and was a full 30 minutes
behind schedule because of oversleeping. He immediately started the required
"morning calisthenics.! Thereafter he carried out all scheduled assignments.
Only his motion sickness interfered with normal performance. It is of interest
to note that Titov's sleeping period coincided largely with nighttime over Russia.
This also was true of the other Russian cosmonauts, and may have been so planned.

Valery Bykovsky - 81 orbits, 119 hr. » 1963--slept four times for periods
of eight hours, alternating with periods of sixteen hours of wakefulness (252 ).
During this flight and that of Valentina Tereshkova - 47 orbits, 71 hr. , 1963 --
""the diurnal periodicity of physiological functions changed only during the first
and last days of the weightless state, which was most probably associated with
the emotional strain. " During the phases of wakefulness, brief rest periods
were usually scheduled for times when the spaceship was not over Russia.

"It should also be noted that at night, during sleep, nearly all cosmonauts
displayed a greater reduction in pulse rate than that recorded during the same
hours in earlier space simulated flight. ' (116 ).

The three-man team of the spaceship Voskhod - 16 orbits, 24 hr., 17 min.,
1964 - rested and slept in shifts during their 24-hour flight.

The reported sleep and wakefulness time patterns in orbital space flight
reflect, by and large, the physiological circadian cycle of 24 hours. For orbit-
ing astronauts, the earth temporal zones are irrelevant to the sleep cycle.
With regard to these zones they are--in a state of asynchrony. Their basic
guiding time has been Greenwich time or Universal Time (U. T.). Neverthe-
less, for physiological and operational reasons it seems to be very desirable
that their physiological clocks remain synchronized with the local time of the
launch time zone, or in a broader sense, to the time zone range of the home
country to which they were adapted during the prelaunch period (314 ). But
in extended (geocentric and heliocentric) space flights, the astronauts probably
will follow a physiological sleep and wakefulness cycle adjusted to their duties,
and not necessarily completely corresponding to the temporal pattern of the
physiological circadian cycle on earth. If operational necessity requires that
the basic sleep-wakefulness cycle be of a non-24-hour periodicity, then an
artificial cycle that is longer than 24 hours might be better than one that is
shorter ( 37, 194, 195). This suggestion might be questioned, however, in
view of the long and successful experience of the United States Navy in main-
taining watch schedules based on work-rest and sleep-wakefulness cycles of
12 -hour duration. However, since the 24-hour schedule is a multiple of 12,
it may be that the 12 -hour schedule is qualitatively more similar to the 24 -hour
schedule than is an 18-hour schedule. (see below)
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On the moon, the physiological sleep and activity cycle will be completely
independent of the physical or selenographic day-night cycle, which is 27
terrestrial days in length. In addition to sunshine, with an illuminance of
140, 000 lux (lumens per square meter), the earthshine at full earth with an
illuminance 75 times stronger than that of the moonshine on earth at full moon,
provides a photic situation approaching a dim daylight situation on earth ( 314 ).
Furthermore, there may be locations with no effective illumination at all
(caverns), or places with constant sunlight as on the ""mountains of eternal
light' near the south pole. Be that as it may, the photic environment on the
moon does not provide a ''Zeitgeber' comparable to the 24 -hour dark-light
cycle on earth. Therefore, the astronauts might adopt a sleep and activity
cycle of the terrestrial circadian pattern, modified by their special tasks and
by the lower gravity on the moon.

On the planet Mars, the day -night cycle is only 37 minutes longer than that
on earth (314). The sky is dark bluish in color, excepting regions covered
with thin whitish clouds. Solar illuminance on the Martian surface at noon may
reach one-third of that on earth. Thus, the temporal dark-light alternation on
Mars offers time cues similar to those on earth.

Duration of the Work Periods (dw)

Studies of the work periods (dw) have been typically conducted using a
total ""daily" periodicity (DT) of 24 hours, and have measured performance as a
function of the total duration of the work period in industrial settings. The
primary factors to be considered in the selection of the length of the duty period
relate to the nature of the activity required of the operator in the performance
of his duties ( 62 ). Account must be taken of both the levels and varieties of
the demands placed on him in carrying out his tasks. For example, some tasks
involve only passive performance on the part of the operator in that several
minutes may elapse during which no event to which he must respond will occur;
this sort of task is exemplified in radar watchkeeping. At the other extreme
are tasks that require active participation of the man by more or less continually
taking actions of some sort, e. g., manual control of the vehicle on re-entry.
An important psychological factor underlying this distinction is the effect that
these two different kinds of tasks exert on the operator's level of alertness.
Passive tasks produce or contribute to decreased alertness whereas, at least
up to some level of workload, active tasks tend to sustain or increase alertness.
The variety of tasks--again up to some level of workload--also tends to promote
alertness. However, moderately high workloads on tasks that require the
nsimultaneous performance' of psychologically disparate functions (e. g.,
mental calculations and code solving) are guite vulnerable to losses in alertness,
and this is especially true for task combinations in which timing is critical.
Thus, in a sense, an alertness paradox is produced (62 ).

Many of the conditions under which performance decrements have been
observed in laboratory studies are not at all likely to occur in properly human-
engineered man-machine systems. Typical of this class of studies is the
vigilance experiment. Here, the occurrence of decrements is largely dependent
upon the presentation of a single task using infrequently occurring, near-
threshold signals of uncertain nature to which the man must respond (303 ).
With these conditions, decrements are exhibited over performance intervals
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as short as 30 minutes. However, even with single tasks, when the signals
have high attention value or are alternated or made redundant, performance
can be maintained for much longer periods without apparent decrement ( 39 ,
40, 128, 212 ). Electrophysiological (EEG, EOG, GSR and nuchal electro-
gram) correlates of vigilance are under study ( 28, 30, 225 ).

With tasks in which the operator has control over his rate of activity (as
in industrial situations involving piece -work production), the man typically
works at a near maximum rate for a period; he then takes either an official
or unofficial rest break, after which he resumes his original rate. Thus the
period of continuous work in most industrial jobs is typically about two hours
is seldom longer than four hours.

The optimum length of duty period has not been investigated except within
rather narrowly defined limits as regards the numbers and kinds of tasks the
man is required to perform. Thus, even though the operational work situation
and performance requirements can be specified exactly, substantive data re-
levant to the determination of the appropriate length of duty periods are in
short supply. However, the data that do exist suggest that work periods on
the order of four hours represent the duration of performance that should be
expected as a matter of routine without encroaching on the maximum efficiency
of which the operator is capable (Figure 16-30). When the level of performance
necessary to satisfy the mission requirements is substantially below the opera-
tor's maximum capabilities, this figure can be increased. But, in determining
how much it can be increased, importance attaches to the probability that an
emergency might arise that would require maximum capabilities and to the
speed with which the operator would have to be able to exercise those cap-
abilities. Fortunately, except when his condition has reached a point of ex-
treme deterioration, man can rather quickly rise to most any situation. The
critical questions are, '""How rapidly must he rise ? how far? and for how long ?"

(62 ).

The Work-Rest Cycle

The ideal work-rest cycle would be one in which the total "daily' period-
icity (DT) equaled 24 hours, distributed in a manner towhich humans are
already adapted. The 90 minute day-night cycle of orbital flight makes this
ideal rather difficult to attain in the operational situation.

The most common division, used in the U. S. submarine fleet, is the 4-on
and 8 -off schedule of standing watch, which is operation on an artificial 12 -hour
cycle (193, 194 ). Reports in the literature would indicate that while the duties
of a submariner may be satisfactorily carried out on such a schedule, efforts
to establish a 12 -hour physiologic rhythm in man have been uniformly unsuc -
cessful on subjective, biochemical and hematological bases ( 142, 221, 222).

Experiments have been performed to discover what dw/dr ratios and
durations yield the best performance. The results of this experimentation
are summarized in Table 16-30. Unfortunately the durations are not very
long. The consistency, however, within experiments and the consistency
between recommendations is interesting. Both authors of earlier studies,
(References 1 and 43), recommended a dw/dr ratio of 2/1 (hours:4/2) and
indicate a general agreement of little or no performance decrement being
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Table 16-30

Results of Experiments Relative to Performance During Various Work-Rest Cycles

Ratio Hours Subjects Days
dw/dr dw/dr Comments DT # N Ref.
2/1%  4/2 "Wide variation in individual per- 6 11 15 1
formance; subjects worked
effectively . "
2/1%  4/2 "Experiment too short' but 'no 6 12 4 1
difference in performance', data
3/1 6/2% indicated trend toward better 4/2 8 10 4 1

performance if experiment had
been prolonged. "

1/1 8/8 4/4 and 2/2 adjusted '"better"” 1
than did 8/8 and 6/6.

1/1 6/6 1

/1% 4/4 1

1/1 2/2 Maximum severity--not recom- 1
mended for routine use.

2/1% 4/2% No marked performance decre- 6 8 43
ment; recommended over 6/2.

1/2 4/8 Confirms that it is difficult to 12 193

establish a physiological 12-hour
(DT)--See Ref.90.

1/1 4/4 8 2 7 265
/1 4/4 8 31
2/1 4/2 With proper selection and motiva- 6 6 15 6

tion this schedule can be attained
with no degradation in performance.

1/1 4/4 Best schedule studied. Function 8 10 30 6
appeared normal; physiological phase
shift toward end of period noted.

2/1 4/2 Steady work period of 40 hours on day 8 6 12 5
6 and 7 poorly tolerated; performance
is generally poorer than equivalent 4/4
schedule.

1/1 4/4 Steady work period of 44 hours on day 6 10 12 5
6 and 7 well tolerated; performance was
good.

noted. In addition, the dw/dr = 2/1 ratio is recommended by both over the
dw/dr = 3/1 ratio on a subjective and objective basis. One group feels that

it is probably feasible to expect a highly motivated man to maintain acceptable
performance levels on a 4/2 schedule for a period as long as 15 days, and,
probably,30 on the basis of some subjective statements. The results of other
subjective studies indicated that some individuals adjust more favorably in
groups where a 4-on and 4-off schedule was used (1, 61, 265, 311).

Recent laboratory studies have shown that most subjects can maintain
satisfactory performance without decrements over a period of 30 days while
following a 4-hours work, 4-hours rest schedule around the clock { 5, 6 ).
A modified control study was conducted using a 4-hours work, 4-hours rest,

4 _hours work, 12-hours rest schedule. No limitations were placed on subjects
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during the 12-hour rest period. The performance of this group of subjects

over a period of 12 days was essentially the same as that of subjects working

12 hours per day while confined to a simulated crew compartment. On the
assumption that a 30 day period was sufficient to reveal any adverse reactions,
one can conclude from these results that the short (4-hour) sleep periods were
sufficient to maintain the ""psychological status' of the operators. These sub-
jects, who were rated pilots, felt that they could have performed their normal
flying duties on a 4/4 schedule throughout the period of the study and the majority
thought they could have continued to do so indefinitely. Periods of sleepless -
ness during the 4/4 schedule were better tolerated than on a 4/2 schedule.

In the 30-day study with subjects following a 4-work/4 -rest schedule, there
was some evidence that the magnitude of the normal physiological periodicity
was reduced toward the end of a month. Specifically, whereas for the first 25
days of the study the fluctuations were significant, during the 26th through the
30th days the cycling was not significant. In studies of submarine personnel
it was found that crewmen on a 12 -hour duty/rest cycle showed a double, body -
temperature curve (193 ). These results suggest the possibility that the
subjects in the 30-day study on a 4/4 schedule may have been tending toward
a ''triple' curve of physiological cycling. Further work is required on the
mechanism behind these phase shifts. It may be that the 4/4 schedules do not
present sufficient time cues. Not all of the physiological functions appeared to
behave similarly. In only one of the groups did Fulse rate really reach a new
steady phase-angle difference. The cause of delay in phase angle shift is also
not clear. An understanding of these phenomena will permit more valid extra-
polation to missions of longer duration.

Human variation in ability to adapt to an atypical (non-24 hour) WRS cycle
has ranged from one week to six years (37, 122, 193, 204, 267 ). Average
times required seem to be in range of 2-3 weeks for complete adaptation (335 ).
Reports of abrupt, rapid adaptation are more surprising than failures to adapt.
All investigators seem to agree on the wide degree of variation in the rate and
completeness of adaptation and the work out-put after adaptation ( 112 ). It is
possible that only a five day adaptation period may be required for normal
function ( 1, 261 ).

The ratio of mean temperature range (MR) to the range of the mean
temperature (RM) has been used as a measure of adaptability (193 ). The
degree of fit of observed temperature cycle to expected changes after being
on new cycle 24 hours has also been used as a measure of adaptability.

The maintenance of a stable sleep-wakefulness cycle, as indicated by a
superimposable body-temperature curve, peaking during wakefulness and drop-
ping during sleep, serves a dual purpose. It promotes greater alertness and
efficiency during working hours, and easier onset of sleep. The consistent,
day-to-day adherence of a stable sleep-wakefulness cycle is, therefore, to be
recommended.

Efficiency During Wakefulness

Efficiency during wakefulness is a major criterion. Efficiency of perform-
ance follows a 24-hour rhythm (193 ). It is low upon arising, shows an initial
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ascent phase, a plateau in the middle of the day, and a terminal descent phase.
Performance immediately upon getting up from a period of sleep is often poorer
than it was just before retiring and is worse after deeper stages of sleep (148 ,
149, 338 ). During split, slzep-wakefulness cycles (4 hours asleep, 4 hours
awake, 4 hours asleep), a ''very low' capacity for work through the middle

four -hour waking period is seen (193 ). Similar findings were noted using a

3 -hour sleep, 3-hour awake, 3 _hour sleep schedule (173 ).

Over a long period of time these circadian periodicities in efficiency have
direct implications on the performance levels to be expected of the operator.
These implications are borne out in data obtained in laboratory confinement
studies. The performance of the man on some tasks and task combinations
reflects the same sort of periodicity that is found in the biological measures.

In the 30-day study with the 4/4 schedule referred to in Table 16-30, this
cycling was present even though the low point of the performance curve always
exceeded in efficiency the high point of comparable subjects following a more
demanding schedule ( 6 ). In this regard, it should be noted that it may well
be that the data obtained using a 4/4 schedule actually give an optimistic view
of the criticality of the association between the biological and performance
data ( 62 ). Specifically, since the duty periods never exceeded four hours,
the potentially detrimental effect of the boredom resulting from continuous
confrontation by the tasks might not have developed to the extent that would
very likely be the case with longer duty periods. Although one cannot rule
out the possibility that performance was depressed by the short sleep periods,
the control data (4-work, 4-rest, 4 -work, and 12 -rest) tend to contradict this
hypothesis. Sleeplessness periods during these schedules are better tolerated
than in 4/2 schedules especially for tasks requiring sustained attention ( 5 ).
Performance returns to approximately the level that would be expected had
there been no period of sleep loss after the subjects on the 4 /4 schedule had
had two sleep periods (8 hours of sleep - 12 hours by thz clock) and those on
the 4/2 schedule had had three sleep periods (6 hours of sleep - 14 hours by
the clock).

Superficially, it would appear that a schedule should be selected that would
require the man to perform only during the high portion of his daily curve of
activation. This would, in theory, provide on the order of 10 to 12 hours per
day of ""high-level" performance. However, examination of the industrial
literature as well as laboratory and field research related to military opera-
tions suggests that ten hours represent too long a period of work at one stretch
to expect performance to be maintained without at least an increase in the
probability of errors and/or decrements.

Non-Temporal Factors

Non-temporal factors affecting the WRS cycle include:

1. The number of crew members on board.

2. The duty assignments or responsibilities of each crew
member.

3. The need for time sharing of work space and facilities.
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4. The need for equal division of task loading, rest and
sleep time.

5. The need for completion of all tasks.

6. Emergency situations.

These non-temporal factors will probably dictate the initial WRS cycles
>n the first orbital lab flights. The best WRS cycle will be one adjusted to
luties, independent of the ambient sun-shadow cycle (i. e., the earth-orbital
ipace environment) and not necessarily corresponding to the time pattern of
he earth day-night cycle. This non-24-hour cycle should be one to which the
tstronaut should be able to adapt in a reasonable amount of time and with which
le can maintain synchronization of his metabolic clock to ensure his best
>sychological performance.

The use of shorter work periods provides an advantage in the event that an
inusual requirement for man-hours should arise either because of a particular
eature of a mission segment or because of an emergency ( 62, 147 ). That
idvantage would be realized during the period in which the system is "recover-
ng' from the increased demand. Specifically, the man may have suffered a
eriod of partial or even total sleep loss while coping with an emergency.
should that have been the case, he probably would find it substantially easier
0 maintain a satisfactory degree of alertness for a 4-hour duty period as com-
ared to, for example, a 10-hour period until such time as he regains his
)r€-emergency status. Preliminary studies suggest that subjects ina 16/8
ichedule tend to tolerate sleep deprivation for 2 days (on day 6 and 7) and re-
‘over faster than subjects on 4/2 and 4/4 work /rest schedules (147 ).

To the extent that a high level of performance will be required on what
vill approach a twenty-four hour per day basis, then serious consideration
nust be given to the selection of the work-rest schedule. The duration of the
luty periods should be limited to a figure that will preclude the development
f task-specific fatigue or boredom. With the anticipated exposures to the
asks to be on a day-after -day basis, a work period that seems to be suitable
't the beginning of a mission may become intolerably long after a period of
ieveral weeks or months. This requires specific study. In addition, sleep
eriods should be arranged so that they will come at essentially the same time
:ach day so that adjustment to (or in) the circadian rhythms will be facilitated.
"hese two factors considered together imply a trade-off between the necessary
'r desirable duration and numbers of sleep periods and the duration of the
ndividual duty periods.

The general conclusion reached from these past studies is that man is
airly well accustomed to a sleep-wakefulness cycle of a 24-hour duration and
hat he had diurnal variations in both performance and physiological function-
ng that coincide with this rhythm. When an atypical cycle is imposed, his
‘hysiological rhythms may be expected to show some adaptation to the non-
4-hour periodicity - -but adaptation is not likely to be complete nor to be
niform for all individuals. Concomitant decrements in performance, however,
nay not occur, especially if the sleep-wakefulness ratio is held constant. The
erformance decrement, whatever its degree, precipitated by the imposition
f a typical work-rest-sleep cycle can be minimized in the following ways:
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¢ The ideal solution is to avoid any non-24-hour work-rest-
sleep cycle (i. e., use 8-on, 16 -off).

e Where this is impossible, employ pre-flight, pre-synchroniza-
tion periods for crews using the non-24-hour cycle proposed
for that flight.

e Coordinate pre-flight pre-synchronization with the abilities
of the individual crew members to adapt (those who adapt
least well should be kept close to their typical schedule).

e Drugs may be utilized as a useful, but undesirable, tool if
synchronization is found to be difficult, but more information
is required on drug influence on cyclical phenomena.

¢ Local (orbital) adaptation to a typical cycle can be accomplished
by new crew members as they are rotated to the lab (if they
are not required to go on duty immediately upon arrival).

Further experimentation with various combinations of non-24-hour cycles
in the weightless environment may yield additional, useful information.

Ground controllers and other operations personnel are often faced with
asynchronous patterns during unusual work schedules or when flying to duty
posts across several time zones ( 95, 152, 153, 199, 200, 267, 314,

315. 337 ). The asynchrony in both east to west and west to east flights
produce subjective fatigue and temporal changes in heart rate and body temp-
erature, but significant physiological deficit has been found only in the east

to west flights. North-south flights do produce fatigue, but do not show
asynchronous physiological patterns along with the psychological deficits ( 154
The duration of fatigue is usually shorter than the time lag in physiological
phase shifts. Large inter -individual differences are noted with some indivi-
duals requiring up to 5 days for phase shift after Oklahoma City to Tokyo jet
flights. Older individuals appear more subjectively sensitive to the asychrony
than younger ones. First, if a traveler to a distant location requires full
alertness for a certain occasion he should, if possible, travel to his destinatio
several days in advance, so that he will be adjusted to the new locality before
he is called on to perform his tasks. Secondly, a coordination of the physio-
logical with the physical day-night cycle can be achieved by presetting his
physiological clock; i. e., by adopting 3 to 5 days in advance of the trip, a
sleep and wakefulness pattern which corresponds to the physical day-night
cycle of the place of destination ( 315).

Sleep Depth and Deprivation

The general sleep requirements in space operations were covered above.
Depth of sleep can be measured by electroencephalographic techniques. Wave
patterns can be distinguished for the awake state, eyes closed and the four
stages of increasing depth of sleep ( 76, 365). The physiological basis for
these patterns as well as occulomotor patterns are under study ( 187, 188

211, 226, 268, 269, 279, 320, 347). As noted above, sleep patterns re-
corded in the first 51 hours of orbital flight are similar to those on earth.
Irregular and aperiodic fluctuations in depth of sleep are normal occurences
(41, 76 ). They are often associated with dream states (76, 150, 166, 211,
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229, 274, 306).

An electroencephalographic study of sleep was carried out in Gemini VII
(42, 190). Baseline, multi-channeled EEG and other psychophysiological
data were recorded on Borman during all stages of sleep and the working state
on earth and compared with those in flight. Fifty-four hours of inflight data
vere obtained at which time the scalp electrode was dislodged. Eight hours
ifter liftoff the command pilot closed his eyes and remained quiet for almost
> hours without showing signs of drowsiness or sleep.

"The first inflight sleep period showed marked fluctuations between
light sleep and arousal, with occasional brief episodes of stage 3
sleep for the first 80 minutes. At that time stage 4 sleep was
reached, but in less than 15 minutes abrupt arousal and termina -
tion of sleep occurred.

On the second day, at 33 hours and 10 minutes after 1lift- off,
the command pilot again closed his eyes and showed immediate
evidence of drowsiness. Within 34 minutes he was in the deepest
level of sleep (stage 4). During this prolonged period of sleep, there
were cyclic alterations in level similar to those which occur in this
astronaut during a full night of sleep under normal conditions.
Generally, each successive swing toward deeper sleep, after the
first period of stage 4 has been obtained, only reaches successively
lighter levels; but, in Borman's second night of sleep, stage 4 was
reached and maintained for 20 minutes or more at three different
times after the first episode. It is interesting to speculate as to
whether this increase in the number of stage 4 periods reflected
an effect of deprivation of sleep during the first 24 hours.

After approximately 7 hours of sleep, a partial arousal from
Stage 4 sleep occurred, and, after a brief period (12 minutes) of
fluctuating between stages 2 and 3, Borman remained in a state
fluctuating between drowsiness and stage 1 sleep until finally fully
roused about 1.5 hours later. Whether any periods of so-called
""paradoxical sleep, rapid eye movement sleep, or dreaming
sleep occurred during this oscitant period cannot be determined
with certainty from these records because of the absence of eye
movement records and because paradoxical sleep is generally
very similar in its character to ordinary stage 1 sleep. However,
two periods of a pattern which resemble an admixture of certain
characteristics of stage 1 and stage 2 sleep, and which resemble
some of the activity which this group and other investigators have
observed in paradoxical sleep, were recorded for relatively long
periods in the second day's sleep (at 11:05 G. M. T. and 14:20
G.M.T.) (187, 188). These consist of runs of 3 per second ''saw-
tooth'" waves, runs of low-voltage theta and alpha activity, low-
voltage beta activity without spindles, and occasional slow tran-
sients with a time course of about 1 second. "

For further study of sleep and other neurological phenomena, data banks
EEG taken on the astronauts are available (113, 341).
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One must also consider sleep deprivation. This acute or chronic stress
is accompanied by only a few consistent physiological changes (114, 118, 210,
326)., The only marked changes consistently found are those that occur in
neurological testing and in the electrical activity of the brain with increased
convulsive tendency (14, 27, 31, 186, 275, 329). Decrease in pulse rate is
not always found (254, 310). Blood sugar, hemoglobin, red and white cell
count, excretion of 17-ketosteroids, total nitrogen and creatine, and the level
of adrenal-like substances in the blood may be unchanged (328). Bioenergetics
may be altered at a biochemical level (114). Body weight, blood pressure,
hand steadiness, auditory acuity, depth perception, and dark adaptation also
have shown no significant changes as a function of sleep loss (87). Only after
46 hours of sleeplessness has minor decrement been noted in visual acuity,
muscle balance and stereoscopic function (256). After 5 hours of sleep, a
return to normal was noted. Factors in the repayment of sleep debt have also
been studied (98, 347). Specific deprivation of paradoxical and other stages
of sleep are now under study (186, 187, 367).

Changes in estimates of fatigue have been reported, but marked difference
in subjective factors among some of the studies prevent the drawing of direct
conclusions (13). Correlation with performance degradation is variable. A
moderate correlation has been reported between feelings of fatigue and the
performance of mental multiplication (12). Correlations have also been
found between a subject's estimation of fatigue and his actual performance of
vigilance, interpretive, and grid-matching tasks (105, 106, 351). In con-
trast, air traffic controllers, on the job, developed feelings of weariness
with sleep deprivation. These were not accompanied by performance decre-
ments (293). There are also indications that judgements based on the ap-
pearance of a subject do not necessarily correlate with the subject's perform-
ance. Changes in behavior, personality, and physical appearance resulting
from a 50-hour period of sleep deprivation have been found more pronounced
than would be suggested by any performance decrements observed (63). A
number of investigators have reported that increased irritability is among the
first signs of pilot fatigue (80, 82, 215). Psychotic hallucinatory and re-
gressive behavior is often brought about especially when confinement and iso-
lation are superimposed on sleep deprivation (6, 101, 118, 277, 352). The
symptoms appear to be related to the specific phase of sleep being deprived
(367). Stage 4 deprivation produces depressive responses; stage 1-REM,
irratability and emotional lability.

Of interest to contingency planners and commanders is the sequence of
progressive deterioration of performance as sleep deprivation is prolonged.
A review of this pattern has been made from which the following is taken
directly (326). Following denial of one night's rest, detection of visual
targets deteriorates markedly (364); choice behavior demands more time and
exhibits more error (363); reading rate decreases although comprehension
does not (170). Visual blurring and diplopia are accompanied with the begin-
ning of misperception (364, 366), and where learing of a complex mental task
is still taking place, the increment is reduced (60).

As the sleepless period begins to involve longer periods, effects are
reported when noted. Thus, after 40 hours, mental work in arithmetic and
color naming appear to suffer (344), as do ability to recall names and objects
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from recent conversation. After 50 to 65 hours, momentary hallucinations

are reported (364). Critical flicker frequency and speed of manual and leg
movement decrease after 60 hours with the diurnal pattern of coordination and
travel movements persisting, indicating some more basic physiological
determinant (146). Memory as represented in the ACE test of intelligence,
deteriorates after 72 hours. Serious lapses now seem to appear with the
deterioration in function reflecting the involvement of or dependence upon alert-
ness and sensory checking (363, 366). It seems that the performance and
sensory deficit has been established by about 65 hours, for no appreciable

drop is noted in these factors, temporal disorientation, or cognitive organiza~-
tion after that period (364). As one passes this three-night period, the
personality factors reflect perceptual changes or deterioration as manifest in
emotional disturbances (50), which seem to predominate until psychotic episodes
(persecutory) appear after 120 hours without sleep (364).

Several studies have demonstrated decreases in performance as the
cumulative effects of sustaining slightly reduced daily sleep over prolonged
periods of time. Measures of performance and muscle tonus have been
compared as they were affected by four successive periods of nightly sleep --
4, 10, 8, and 6 hours, respectively--repeated 7 times over an interval of 28
days (111). Greater work output was accompanied by greater tonus, and
muscle tonus appeared to vary more with sleep loss than did performance.
This suggests the presence of some form of tonic muscular compensation
during performance testing. Also, the cumulative effects of prolonged sleep
loss tended to offset the efficacy of the tonic muscular compensation. The
experimental effects in this study, however, were confounded, to a degree, by
the different durations of sleep allowed on each day of every replication. This
was particularly noticeable in the scores that followed 10 hours of sleep be-
cause they more nearly approximated those following the 4-hour sleep period
than those following the 6- or 8-hour sleep periods. Since the 10-hour sleep
period was always preceded by the 4-hour, it is very likely that a carry-over
effect was present.

A schedule of 7 consecutive hours of nightly sleep during one month has
been compared with an experimental schedule of interrupted nightly sleep
during the following month (173). On each night of the experimental month
the subject slept 3 hours, remained awake 3 hours, and then slept 3 additional
hours. No difference in performance was found between the two schedules;
in those tests where learning was present, improvement continued at the same
rates regardless of the alternation- of-sleep routine.

In another study two '"capable and highly motivated' subjects were required
to perform continuously without sleep for a period of 24 hours (120). The
task situation was a complex one that required the constant attention of each
subject. The tasks, enclosed in two "flight'" simulators, were selected to
measure eye-limb coordination, problem solving, estimation of closure rates,
selection and manipulation of controls, and the noticing of environmental
changes both inside and outside the simulator. As indicated by each of the
seven specific measures used, performance followed a pattern of rising to a
peak after 6 to 10 hours and then dropping off sharply to a low point reached
during the final 2 or 3 hours of the test, Differences bet ween the two subjects
and among the several tasks used were also quite evident. End-spurt effects
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were avoided by slowing the subjects' clocks so that after 24 hours had actually
elapsed, the clocks indicated that the subjects still had about 3 hours to work.

The vigilance performances of subjects who had just returned from flying
15-hour sorties at night have been found to be surpassed by those of otherwise
comparable subjects who had just flown the same sorties during the day (104).
Although this decrement may be interpreted as being a function of the loss of
sleep, it may also be interpreted as being the result of differences in the
difficulty of day versus night flying.

Motivation, monotony, complexity of task, arousal factors, and many
other variables control the degradation of pe rformance of the sleep deprivation
(39, 40, 68, 87, 118, 326, 347, 352, 362, 366). Specific periods of sleep are
more sensitive than others to behavioral and other responses of deprivation(367)
Sleep deprivation of different forms will alter performance when superimposed
on individuals in the process of adapting, or even fully adapted, to altered WRS
cycles. Preliminary studies are discussed above.

Induction of sleep by electrical means has received study in recent years
(33, 175, 176, 177, 183, 374). The advantage over drug-induced sleep is
reversibility. However, techniques are still in the preliminary stage of de-
velopment. Under some emergency situations on long duration flights, such
techniques may be of value. Anesthesia may also be induced electrically
(175, 177, 180, 183, 198, 299, 300, 359). Learning and memory during
natural sleep are under study (32).
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